--- datasets: - Open-Orca/SlimOrca - ise-uiuc/Magicoder-OSS-Instruct-75K - ise-uiuc/Magicoder-Evol-Instruct-110K - meta-math/MetaMathQA language: - en library_name: transformers pipeline_tag: text-generation arxiv: 2401.02731 license: apache-2.0 --- # Parameter-Efficient Sparsity Crafting From Dense to Mixture-of-Experts for Instruction Tuning on General Tasks (EMNLP'24) ## News - 9/20/2024 - Our paper is accepted by EMNLP'24. - 3/12/2024 - We release Qwen2idae-16x14B-v1.0 on 🤗 [HuggingFace](https://huggingface.co/hywu/Qwen2idae-16x14B-v1.0), which has strong performance in Math and Code with 15B activated params. - 2/7/2024 - [Serp-ai](https://github.com/serp-ai/Parameter-Efficient-MoE) adds [unsloth](https://github.com/serp-ai/unsloth) support for faster and memory efficient training of our Parameter-Efficient Sparsity Crafting and releases new [sparsetral](https://huggingface.co/serpdotai/sparsetral-16x7B-v2) models based on mistral-7B. - 1/10/2024 - Camelidae models are now available on 🤗 [HuggingFace](https://huggingface.co/hywu). - 1/4/2024 - We release the paper, [Parameter-Efficient Sparsity Crafting From Dense to Mixture-of-Experts for Instruction Tuning on General Tasks](https://arxiv.org/abs/2401.02731). - 12/22/2023 - We release the training [repo](https://github.com/wuhy68/Parameter-Efficient-MoE) that craft the dense model with LLaMA architecture to the MoE model. ## Introduction Camelidae and Qwen2idae models are trained utilizing Parameter-Efficient Sparsity Crafting techniques We present Parameter-Efficient Sparsity Crafting to help dense models learn knowledge from different fields (including code and math). This approach performs instruction tuning and efficiently utilizes MoE structure. Specifically, Parameter-Efficient Sparsity Crafting utilizes parameter-efficient techniques including [QLoRA](https://arxiv.org/abs/2305.14314) and [Adapter](https://arxiv.org/abs/1902.00751) to perform Efficient [Sparse Upcycling](https://arxiv.org/abs/2212.05055). ## Model Lists | Camelidae Series | Download |---|--- Camelidae-8x7B | 🤗 [HuggingFace](https://huggingface.co/hywu/Camelidae-8x7B) Camelidae-8x13B | 🤗 [HuggingFace](https://huggingface.co/hywu/Camelidae-8x13B) Camelidae-8x34B | 🤗 [HuggingFace](https://huggingface.co/hywu/Camelidae-8x34B) Camelidae-8x34B-pro | 🤗 Coming Soon | Qwen2idae Series | Download |---|--- Qwen2idae-16x14B-v1.0 | 🤗 [HuggingFace](https://huggingface.co/hywu/Qwen2idae-16x14B-v1.0) Qwen2idae-16x7B-v1.0 | 🤗 Coming Soon Qwen2idae-16x1.8B-v1.0 | 🤗 Coming Soon ## Performance | Model | Activated Params | MMLU (5shot) | GSM8k (5shot) | MATH (4shot) | HumanEval (0shot) | MBPP (4shot) | HellaSwag (10shot) | |:-----:|:----------------:|:------------:|:-------------:|:------------:|:-----------------:|:------------:|:------------------:| | GPT3.5 | - | 70.0% | 57.1% | **34.1%** | **48.1%** | - | **85.5%** | | LLaMA2-70B-chat | 70B | 63.8% | 59.3% | 10.4% | 32.3% | 35.6% | 84.8% | | Camelidae-8x34B-pro | 35B | **75.7%** | **79.4%** | **24.0%** | **48.8%** | **43.2%** | 85.2% | | Camelidae-8x34B | 35B | **75.6%** | **78.3%** | 22.6% | 43.9% | **41.4%** | **85.3%** | | SUSChat-34B | 34B | **76.4%** | 72.3% | 22.0% | 11.6% | 40.2% | 83.9% | | Yi-34B-chat | 34B | 74.8% | 67.6% | 17.3% | 20.1% | 41.0% | 83.9% | | Qwen2idae-16x14B-v1.0 | 15B | 66.7% | **77.8%** | **29.9%** | **62.8%** | **48.6%** | 82.3% | | Mixtral-8x7B-instruct | 14B | 68.7% | 71.7% | 22.1% | 25.6% | 40.6% | **86.5%** | | Camelidae-8x13B | 13B | 54.4% | 52.6% | 9.8% | 30.6% | 30.4% | 82.5% | | LLaMA2-13B-chat | 13B | 53.9% | 37.1% | 5.2% | 18.9% | 27.2% | 81.9% | | Camelidae-8x7B | 7B | 48.3% | 44.0% | 5.8% | 18.3% | 23.4% | 79.2% | | LLaMA2-7B-chat | 7B | 47.2% | 26.3% | 3.9% | 12.2% | 17.6% | 78.6% | We bold the top3 scores separately for all models. ## Usage ```python from transformers import AutoModelForCausalLM, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("hywu/Camelidae-8x13B", trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained("hywu/Camelidae-8x13B", device_map="auto", trust_remote_code=True).eval() inputs = tokenizer('### Human:\nHow are you?\n### Assistant:\n', return_tensors='pt') inputs = inputs.to(model.device) pred = model.generate(**inputs) print(tokenizer.decode(pred.cpu()[0], skip_special_tokens=True)) ``` ## Citation ```bibtex @article{wu2024parameter, title={Parameter-Efficient Sparsity Crafting from Dense to Mixture-of-Experts for Instruction Tuning on General Tasks}, author={Wu, Haoyuan and Zheng, Haisheng and Yu, Bei}, journal={arXiv preprint arXiv:2401.02731}, year={2024} } ``` ## License The source code in this repo is licensed under the [Apache 2.0 License](https://github.com/wuhy68/Parameter-Efficient-MoE/blob/master/LICENSE). Camelidae models are developed for academic research and free commercial use, all usage must adhere to the license from [facebookresearch](https://github.com/facebookresearch/llama/blob/main/LICENSE) and [01-ai](https://github.com/01-ai/Yi/blob/main/MODEL_LICENSE_AGREEMENT.txt).