--- language: - en pipeline_tag: unconditional-image-generation tags: - Diffusion Models - Stable Diffusion - Perturbed-Attention Guidance - PAG --- # Inpainting with Perturbed-Attention Guidance [Project](https://ku-cvlab.github.io/Perturbed-Attention-Guidance/) / [arXiv](https://arxiv.org/abs/2403.17377) / [GitHub](https://github.com/KU-CVLAB/Perturbed-Attention-Guidance) This repository is based on [Diffusers](https://huggingface.co/docs/diffusers/index). The pipeline is a modification of StableDiffusionPipeline to support inpainting with Perturbed-Attention Guidance (PAG). ## Quickstart Loading Custom Piepline: ``` from diffusers import StableDiffusionPipeline pipe = StableDiffusionPipeline.from_pretrained( "runwayml/stable-diffusion-inpainting", custom_pipeline="hyoungwoncho/sd_perturbed_attention_guidance_inpaint", torch_dtype=torch.float16, safety_checker=None ) device="cuda" pipe = pipe.to(device) ``` Inpainting with PAG: ``` output = pipe( prompts, image=init_image, mask_image=mask_image, num_inference_steps=50, guidance_scale=0.0, pag_scale=5.0, pag_applied_layers_index=['m0'] ).images[0] ``` ## Parameters guidance_scale : gudiance scale of CFG (ex: 7.5) pag_scale : gudiance scale of PAG (ex: 5.0) pag_applied_layers_index : index of the layer to apply perturbation (ex: ['m0'])