--- language: - ko license: apache-2.0 tags: - hf-asr-leaderboard - generated_from_trainer datasets: - hyojin99/EBRC base_model: openai/whisper-base model-index: - name: ft_model results: [] --- # ft_model This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co/openai/whisper-base) on the EBRC dataset. It achieves the following results on the evaluation set: - Loss: 0.4038 - Cer: 16.0524 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - training_steps: 7500 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Cer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.4536 | 1.0 | 1500 | 0.4538 | 19.4484 | | 0.2586 | 2.0 | 3000 | 0.4007 | 17.8279 | | 0.1318 | 3.0 | 4500 | 0.3922 | 17.2162 | | 0.0583 | 4.0 | 6000 | 0.3956 | 16.2765 | | 0.0197 | 5.0 | 7500 | 0.4038 | 16.0524 | ### Framework versions - Transformers 4.40.0.dev0 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2