--- language: - ko license: apache-2.0 tags: - hf-asr-leaderboard - generated_from_trainer datasets: - hyojin99/EBRC base_model: openai/whisper-base model-index: - name: ft_model results: [] --- # ft_model This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co/openai/whisper-base) on the EBRC dataset. It achieves the following results on the evaluation set: - Loss: 0.4271 - Cer: 19.8362 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - training_steps: 6000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Cer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.5853 | 0.4 | 1000 | 0.5518 | 34.2215 | | 0.4595 | 0.8 | 2000 | 0.4852 | 23.2105 | | 0.313 | 1.2 | 3000 | 0.4593 | 21.0304 | | 0.327 | 1.6 | 4000 | 0.4400 | 21.5894 | | 0.311 | 2.0 | 5000 | 0.4277 | 19.6565 | | 0.2514 | 2.4 | 6000 | 0.4271 | 19.8362 | ### Framework versions - Transformers 4.39.0.dev0 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2