import torch from lambda_networks import LambdaLayer from lambda_networks import RLambdaLayer layer = LambdaLayer(dim=8, dim_out=8, r=23, dim_k=16, heads=4, dim_u=4) rlayer = RLambdaLayer(dim=8, dim_out=8, r=23, dim_k=16, heads=4, dim_u=4, recurrence=3) if __name__ == "__main__": x = torch.randn(1, 8, 64, 64, requires_grad=True) y = layer(x) z = rlayer(x) print(y.shape, z.shape) z.sum().backward()