--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy - precision - recall - f1 model-index: - name: vit-base-aihub_model-v2 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.8373493975903614 - name: Precision type: precision value: 0.8745971666076694 - name: Recall type: recall value: 0.7993336310123969 - name: F1 type: f1 value: 0.8036849674785987 --- # vit-base-aihub_model-v2 This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.1993 - Accuracy: 0.8373 - Precision: 0.8746 - Recall: 0.7993 - F1: 0.8037 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 512 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | No log | 1.0 | 3 | 1.6294 | 0.6747 | 0.6434 | 0.6238 | 0.5944 | | No log | 2.0 | 6 | 1.4495 | 0.7530 | 0.7776 | 0.7018 | 0.6875 | | No log | 3.0 | 9 | 1.3163 | 0.8373 | 0.8563 | 0.7993 | 0.8022 | | 1.5378 | 4.0 | 12 | 1.2327 | 0.8373 | 0.8736 | 0.7993 | 0.8035 | | 1.5378 | 5.0 | 15 | 1.1993 | 0.8373 | 0.8746 | 0.7993 | 0.8037 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu117 - Datasets 2.12.0 - Tokenizers 0.13.3