File size: 17,063 Bytes
d32f26e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
from functools import lru_cache

from typing import cast, Any, Callable, Dict, Iterable, List, Optional
from typing import Sequence, Tuple, Union
from collections import Counter
from copy import deepcopy
from itertools import islice
import numpy as np

import srsly
from thinc.api import Config, Model, SequenceCategoricalCrossentropy, NumpyOps
from thinc.types import Floats2d, Ints2d

from spacy.pipeline._edit_tree_internals.edit_trees import EditTrees
from spacy.pipeline._edit_tree_internals.schemas import validate_edit_tree
from spacy.pipeline.lemmatizer import lemmatizer_score
from spacy.pipeline.trainable_pipe import TrainablePipe
from spacy.errors import Errors
from spacy.language import Language
from spacy.tokens import Doc, Token
from spacy.training import Example, validate_examples, validate_get_examples
from spacy.vocab import Vocab
from spacy import util


TOP_K_GUARDRAIL = 20


default_model_config = """
[model]
@architectures = "spacy.Tagger.v2"

[model.tok2vec]
@architectures = "spacy.HashEmbedCNN.v2"
pretrained_vectors = null
width = 96
depth = 4
embed_size = 2000
window_size = 1
maxout_pieces = 3
subword_features = true
"""
DEFAULT_EDIT_TREE_LEMMATIZER_MODEL = Config().from_str(default_model_config)["model"]


@Language.factory(
    "trainable_lemmatizer_v2",
    assigns=["token.lemma"],
    requires=[],
    default_config={
        "model": DEFAULT_EDIT_TREE_LEMMATIZER_MODEL,
        "backoff": "orth",
        "min_tree_freq": 3,
        "overwrite": False,
        "top_k": 1,
        "overwrite_labels": True,
        "scorer": {"@scorers": "spacy.lemmatizer_scorer.v1"},
    },
    default_score_weights={"lemma_acc": 1.0},
)
def make_edit_tree_lemmatizer(
    nlp: Language,
    name: str,
    model: Model,
    backoff: Optional[str],
    min_tree_freq: int,
    overwrite: bool,
    top_k: int,
    overwrite_labels: bool,
    scorer: Optional[Callable],
):
    """Construct an EditTreeLemmatizer component."""
    return EditTreeLemmatizer(
        nlp.vocab,
        model,
        name,
        backoff=backoff,
        min_tree_freq=min_tree_freq,
        overwrite=overwrite,
        top_k=top_k,
        overwrite_labels=overwrite_labels,
        scorer=scorer,
    )


# _f = open("lemmatizer.log", "w")
# def debug(*args):
#     _f.write(" ".join(args) + "\n")
def debug(*args):
    pass


class EditTreeLemmatizer(TrainablePipe):
    """
    Lemmatizer that lemmatizes each word using a predicted edit tree.
    """

    def __init__(
        self,
        vocab: Vocab,
        model: Model,
        name: str = "trainable_lemmatizer",
        *,
        backoff: Optional[str] = "orth",
        min_tree_freq: int = 3,
        overwrite: bool = False,
        top_k: int = 1,
        overwrite_labels,
        scorer: Optional[Callable] = lemmatizer_score,
    ):
        """
        Construct an edit tree lemmatizer.

        backoff (Optional[str]): backoff to use when the predicted edit trees
            are not applicable. Must be an attribute of Token or None (leave the
            lemma unset).
        min_tree_freq (int): prune trees that are applied less than this
            frequency in the training data.
        overwrite (bool): overwrite existing lemma annotations.
        top_k (int): try to apply at most the k most probable edit trees.
        """
        self.vocab = vocab
        self.model = model
        self.name = name
        self.backoff = backoff
        self.min_tree_freq = min_tree_freq
        self.overwrite = overwrite
        self.top_k = top_k
        self.overwrite_labels = overwrite_labels

        self.trees = EditTrees(self.vocab.strings)
        self.tree2label: Dict[int, int] = {}

        self.cfg: Dict[str, Any] = {"labels": []}
        self.scorer = scorer
        self.numpy_ops = NumpyOps()

    def get_loss(
        self, examples: Iterable[Example], scores: List[Floats2d]
    ) -> Tuple[float, List[Floats2d]]:
        validate_examples(examples, "EditTreeLemmatizer.get_loss")
        loss_func = SequenceCategoricalCrossentropy(normalize=False, missing_value=-1)

        truths = []
        for eg in examples:
            eg_truths = []
            for (predicted, gold_lemma, gold_pos, gold_sent_start) in zip(
                eg.predicted,
                eg.get_aligned("LEMMA", as_string=True),
                eg.get_aligned("POS", as_string=True),
                eg.get_aligned_sent_starts(),
            ):
                if gold_lemma is None:
                    label = -1
                else:
                    form = self._get_true_cased_form(
                        predicted.text, gold_sent_start, gold_pos
                    )
                    tree_id = self.trees.add(form, gold_lemma)
                    # debug(f"@get_loss: {predicted}/{gold_pos}[{gold_sent_start}]->{form}|{gold_lemma}[{tree_id}]")
                    label = self.tree2label.get(tree_id, 0)
                eg_truths.append(label)

            truths.append(eg_truths)

        d_scores, loss = loss_func(scores, truths)
        if self.model.ops.xp.isnan(loss):
            raise ValueError(Errors.E910.format(name=self.name))

        return float(loss), d_scores

    def predict(self, docs: Iterable[Doc]) -> List[Ints2d]:
        if self.top_k == 1:
            scores2guesses = self._scores2guesses_top_k_equals_1
        elif self.top_k <= TOP_K_GUARDRAIL:
            scores2guesses = self._scores2guesses_top_k_greater_1
        else:
            scores2guesses = self._scores2guesses_top_k_guardrail
        # The behaviour of *_scores2guesses_top_k_greater_1()* is efficient for values
        # of *top_k>1* that are likely to be useful when the edit tree lemmatizer is used
        # for its principal purpose of lemmatizing tokens. However, the code could also
        # be used for other purposes, and with very large values of *top_k* the method
        # becomes inefficient. In such cases, *_scores2guesses_top_k_guardrail()* is used
        # instead.
        n_docs = len(list(docs))
        if not any(len(doc) for doc in docs):
            # Handle cases where there are no tokens in any docs.
            n_labels = len(self.cfg["labels"])
            guesses: List[Ints2d] = [self.model.ops.alloc2i(0, n_labels) for _ in docs]
            assert len(guesses) == n_docs
            return guesses
        scores = self.model.predict(docs)
        assert len(scores) == n_docs
        guesses = scores2guesses(docs, scores)
        assert len(guesses) == n_docs
        return guesses

    def _scores2guesses_top_k_equals_1(self, docs, scores):
        guesses = []
        for doc, doc_scores in zip(docs, scores):
            doc_guesses = doc_scores.argmax(axis=1)
            doc_guesses = self.numpy_ops.asarray(doc_guesses)

            doc_compat_guesses = []
            for i, token in enumerate(doc):
                tree_id = self.cfg["labels"][doc_guesses[i]]
                form: str = self._get_true_cased_form_of_token(token)
                if self.trees.apply(tree_id, form) is not None:
                    doc_compat_guesses.append(tree_id)
                else:
                    doc_compat_guesses.append(-1)
            guesses.append(np.array(doc_compat_guesses))

        return guesses

    def _scores2guesses_top_k_greater_1(self, docs, scores):
        guesses = []
        top_k = min(self.top_k, len(self.labels))
        for doc, doc_scores in zip(docs, scores):
            doc_scores = self.numpy_ops.asarray(doc_scores)
            doc_compat_guesses = []
            for i, token in enumerate(doc):
                for _ in range(top_k):
                    candidate = int(doc_scores[i].argmax())
                    candidate_tree_id = self.cfg["labels"][candidate]
                    form: str = self._get_true_cased_form_of_token(token)
                    if self.trees.apply(candidate_tree_id, form) is not None:
                        doc_compat_guesses.append(candidate_tree_id)
                        break
                    doc_scores[i, candidate] = np.finfo(np.float32).min
                else:
                    doc_compat_guesses.append(-1)
            guesses.append(np.array(doc_compat_guesses))

        return guesses

    def _scores2guesses_top_k_guardrail(self, docs, scores):
        guesses = []
        for doc, doc_scores in zip(docs, scores):
            doc_guesses = np.argsort(doc_scores)[..., : -self.top_k - 1 : -1]
            doc_guesses = self.numpy_ops.asarray(doc_guesses)

            doc_compat_guesses = []
            for token, candidates in zip(doc, doc_guesses):
                tree_id = -1
                for candidate in candidates:
                    candidate_tree_id = self.cfg["labels"][candidate]

                    form: str = self._get_true_cased_form_of_token(token)

                    if self.trees.apply(candidate_tree_id, form) is not None:
                        tree_id = candidate_tree_id
                        break
                doc_compat_guesses.append(tree_id)

            guesses.append(np.array(doc_compat_guesses))

        return guesses

    def set_annotations(self, docs: Iterable[Doc], batch_tree_ids):
        for i, doc in enumerate(docs):
            doc_tree_ids = batch_tree_ids[i]
            if hasattr(doc_tree_ids, "get"):
                doc_tree_ids = doc_tree_ids.get()
            for j, tree_id in enumerate(doc_tree_ids):
                if self.overwrite or doc[j].lemma == 0:
                    # If no applicable tree could be found during prediction,
                    # the special identifier -1 is used. Otherwise the tree
                    # is guaranteed to be applicable.
                    if tree_id == -1:
                        if self.backoff is not None:
                            doc[j].lemma = getattr(doc[j], self.backoff)
                    else:
                        form = self._get_true_cased_form_of_token(doc[j])
                        lemma = self.trees.apply(tree_id, form) or form
                        # debug(f"@set_annotations: {doc[j]}/{doc[j].pos_}[{doc[j].is_sent_start}]->{form}|{lemma}[{tree_id}]")
                        doc[j].lemma_ = lemma

    @property
    def labels(self) -> Tuple[int, ...]:
        """Returns the labels currently added to the component."""
        return tuple(self.cfg["labels"])

    @property
    def hide_labels(self) -> bool:
        return True

    @property
    def label_data(self) -> Dict:
        trees = []
        for tree_id in range(len(self.trees)):
            tree = self.trees[tree_id]
            if "orig" in tree:
                tree["orig"] = self.vocab.strings[tree["orig"]]
            if "subst" in tree:
                tree["subst"] = self.vocab.strings[tree["subst"]]
            trees.append(tree)
        return dict(trees=trees, labels=tuple(self.cfg["labels"]))

    def initialize(
        self,
        get_examples: Callable[[], Iterable[Example]],
        *,
        nlp: Optional[Language] = None,
        labels: Optional[Dict] = None,
    ):
        validate_get_examples(get_examples, "EditTreeLemmatizer.initialize")

        if self.overwrite_labels:
            if labels is None:
                self._labels_from_data(get_examples)
            else:
                self._add_labels(labels)

        # Sample for the model.
        doc_sample = []
        label_sample = []
        for example in islice(get_examples(), 10):
            doc_sample.append(example.x)
            gold_labels: List[List[float]] = []
            for token in example.reference:
                if token.lemma == 0:
                    gold_label = None
                else:
                    gold_label = self._pair2label(token.text, token.lemma_)

                gold_labels.append(
                    [
                        1.0 if label == gold_label else 0.0
                        for label in self.cfg["labels"]
                    ]
                )

            gold_labels = cast(Floats2d, gold_labels)
            label_sample.append(self.model.ops.asarray(gold_labels, dtype="float32"))

        self._require_labels()
        assert len(doc_sample) > 0, Errors.E923.format(name=self.name)
        assert len(label_sample) > 0, Errors.E923.format(name=self.name)

        self.model.initialize(X=doc_sample, Y=label_sample)

    def from_bytes(self, bytes_data, *, exclude=tuple()):
        deserializers = {
            "cfg": lambda b: self.cfg.update(srsly.json_loads(b)),
            "model": lambda b: self.model.from_bytes(b),
            "vocab": lambda b: self.vocab.from_bytes(b, exclude=exclude),
            "trees": lambda b: self.trees.from_bytes(b),
        }

        util.from_bytes(bytes_data, deserializers, exclude)

        return self

    def to_bytes(self, *, exclude=tuple()):
        serializers = {
            "cfg": lambda: srsly.json_dumps(self.cfg),
            "model": lambda: self.model.to_bytes(),
            "vocab": lambda: self.vocab.to_bytes(exclude=exclude),
            "trees": lambda: self.trees.to_bytes(),
        }

        return util.to_bytes(serializers, exclude)

    def to_disk(self, path, exclude=tuple()):
        path = util.ensure_path(path)
        serializers = {
            "cfg": lambda p: srsly.write_json(p, self.cfg),
            "model": lambda p: self.model.to_disk(p),
            "vocab": lambda p: self.vocab.to_disk(p, exclude=exclude),
            "trees": lambda p: self.trees.to_disk(p),
        }
        util.to_disk(path, serializers, exclude)

    def from_disk(self, path, exclude=tuple()):
        def load_model(p):
            try:
                with open(p, "rb") as mfile:
                    self.model.from_bytes(mfile.read())
            except AttributeError:
                raise ValueError(Errors.E149) from None

        deserializers = {
            "cfg": lambda p: self.cfg.update(srsly.read_json(p)),
            "model": load_model,
            "vocab": lambda p: self.vocab.from_disk(p, exclude=exclude),
            "trees": lambda p: self.trees.from_disk(p),
        }

        util.from_disk(path, deserializers, exclude)
        return self

    def _add_labels(self, labels: Dict):
        if "labels" not in labels:
            raise ValueError(Errors.E857.format(name="labels"))
        if "trees" not in labels:
            raise ValueError(Errors.E857.format(name="trees"))

        self.cfg["labels"] = list(labels["labels"])
        trees = []
        for tree in labels["trees"]:
            errors = validate_edit_tree(tree)
            if errors:
                raise ValueError(Errors.E1026.format(errors="\n".join(errors)))

            tree = dict(tree)
            if "orig" in tree:
                tree["orig"] = self.vocab.strings[tree["orig"]]
            if "orig" in tree:
                tree["subst"] = self.vocab.strings[tree["subst"]]

            trees.append(tree)

        self.trees.from_json(trees)

        for label, tree in enumerate(self.labels):
            self.tree2label[tree] = label

    def _labels_from_data(self, get_examples: Callable[[], Iterable[Example]]):
        # Count corpus tree frequencies in ad-hoc storage to avoid cluttering
        # the final pipe/string store.
        vocab = Vocab()
        trees = EditTrees(vocab.strings)
        tree_freqs: Counter = Counter()
        repr_pairs: Dict = {}
        for example in get_examples():
            for token in example.reference:
                if token.lemma != 0:
                    form = self._get_true_cased_form_of_token(token)
                    # debug("_labels_from_data", str(token) + "->" + form, token.lemma_)
                    tree_id = trees.add(form, token.lemma_)
                    tree_freqs[tree_id] += 1
                    repr_pairs[tree_id] = (form, token.lemma_)

        # Construct trees that make the frequency cut-off using representative
        # form - token pairs.
        for tree_id, freq in tree_freqs.items():
            if freq >= self.min_tree_freq:
                form, lemma = repr_pairs[tree_id]
                self._pair2label(form, lemma, add_label=True)

    @lru_cache()
    def _get_true_cased_form(self, token: str, is_sent_start: bool, pos: str) -> str:
        if is_sent_start and pos != "PROPN":
            return token.lower()
        else:
            return token

    def _get_true_cased_form_of_token(self, token: Token) -> str:
        return self._get_true_cased_form(token.text, token.is_sent_start, token.pos_)

    def _pair2label(self, form, lemma, add_label=False):
        """
        Look up the edit tree identifier for a form/label pair. If the edit
        tree is unknown and "add_label" is set, the edit tree will be added to
        the labels.
        """
        tree_id = self.trees.add(form, lemma)
        if tree_id not in self.tree2label:
            if not add_label:
                return None

            self.tree2label[tree_id] = len(self.cfg["labels"])
            self.cfg["labels"].append(tree_id)
        return self.tree2label[tree_id]