import tensorflow as tf from tensorflow import keras from tensorflow.keras import layers, optimizers # Custom Layer for Boolformer, with added threshold parameter class BoolformerLayer(layers.Layer): def __init__(self, threshold=0.5, **kwargs): super(BoolformerLayer, self).__init__(**kwargs) self.threshold = threshold def build(self, input_shape): self.dense_layer = layers.Dense(input_shape[-1], activation='relu') def call(self, inputs): logic_and = tf.math.logical_and(inputs, inputs > self.threshold) logic_transformed = self.dense_layer(logic_and) return logic_transformed # Updated positional encoding function with improved efficiency def positional_encoding(seq_length, d_model): position = tf.range(seq_length, dtype=tf.float32)[:, tf.newaxis] div_term = tf.exp(tf.range(0, d_model, 2, dtype=tf.float32) * -(tf.math.log(10000.0) / d_model)) pos_encoding = position * div_term pos_encoding = tf.concat([tf.sin(pos_encoding[:, 0::2]), tf.cos(pos_encoding[:, 1::2])], axis=-1) return pos_encoding[tf.newaxis, ...] # Enhanced transformer encoder with parameter flexibility def transformer_encoder(inputs, head_size, num_heads, ff_dim, dropout_rate=0.1): attention_output = layers.MultiHeadAttention(key_dim=head_size, num_heads=num_heads, dropout=dropout_rate)(inputs, inputs) attention_output = layers.Dropout(dropout_rate)(attention_output) attention_output = layers.LayerNormalization(epsilon=1e-6)(inputs + attention_output) ffn_output = layers.Dense(ff_dim, activation="relu")(attention_output) ffn_output = layers.Dense(inputs.shape[-1])(ffn_output) ffn_output = layers.Dropout(dropout_rate)(ffn_output) return layers.LayerNormalization(epsilon=1e-6)(attention_output + ffn_output) # Improved QLearningLayer with additional functionality class QLearningLayer(layers.Layer): def __init__(self, action_space_size, learning_rate=0.01, gamma=0.95, **kwargs): super(QLearningLayer, self).__init__(**kwargs) self.action_space_size = action_space_size self.learning_rate = learning_rate self.gamma = gamma def build(self, input_shape): self.q_table = tf.Variable(initial_value=tf.random.uniform([input_shape[-1], self.action_space_size], 0, 1), trainable=True) def call(self, state, action=None, reward=None, next_state=None): if action is not None and reward is not None and next_state is not None: q_update = reward + self.gamma * tf.reduce_max(self.q_table[next_state]) self.q_table[state, action].assign((1 - self.learning_rate) * self.q_table[state, action] + self.learning_rate * q_update) return tf.argmax(self.q_table[state], axis=1) # Function to create and compile the neural network model def create_neural_network_model(seq_length, d_model, action_space_size): input_layer = keras.Input(shape=(seq_length, d_model)) pos_encoded = positional_encoding(seq_length, d_model) + input_layer transformer_output = transformer_encoder(pos_encoded, head_size=32, num_heads=2, ff_dim=64) x_bool = BoolformerLayer()(transformer_output) rl_layer = QLearningLayer(action_space_size=action_space_size)(x_bool) output_layer = layers.Dense(action_space_size, activation='softmax', name='Output')(rl_layer) reward_layer = layers.Dense(1, name='Reward')(rl_layer) model = keras.Model(inputs=input_layer, outputs=[output_layer, reward_layer]) opt = optimizers.Adam(learning_rate=0.001) model.compile(optimizer=opt, loss={'Output': 'categorical_crossentropy', 'Reward': 'mean_squared_error'}, metrics={'Output': 'accuracy'}) return model # Example of creating and compiling the model seq_length = 128 # Example sequence length d_model = 512 # Example dimension action_space_size = 10 # Example action space size model = create_neural_network_model(seq_length, d_model, action_space_size)