--- tags: - generated_from_trainer model-index: - name: CoVBERT results: [] widget: - text: "MLLTSFFALVDSTI" --- # CoVBERT CoVBERT is a protein language model which speaks the language of SARS-CoV-2 spike proteins! Enter a sequence with `````` and let CoVBERT predict the mutation at that position! CoVBERT has been trained with 50K spike glycoprotein sequences scraped from [GISAID](https://gisaid.org) It achieves the following results on the evaluation set: - Loss: 0.1343 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.3432 | 0.02 | 100 | 1.4642 | | 1.4307 | 0.04 | 200 | 1.2907 | | 1.3923 | 0.06 | 300 | 1.2445 | | 1.2719 | 0.08 | 400 | 1.1913 | | 1.1292 | 0.1 | 500 | 0.9962 | | 0.9344 | 0.12 | 600 | 0.7351 | | 0.7481 | 0.14 | 700 | 0.6377 | | 0.6194 | 0.16 | 800 | 0.4843 | | 0.4363 | 0.18 | 900 | 0.4043 | | 0.416 | 0.2 | 1000 | 0.3693 | | 0.3295 | 0.22 | 1100 | 0.3520 | | 0.3416 | 0.24 | 1200 | 0.3343 | | 0.3755 | 0.26 | 1300 | 0.3274 | | 0.3064 | 0.28 | 1400 | 0.3127 | | 0.3295 | 0.3 | 1500 | 0.2998 | | 0.2928 | 0.32 | 1600 | 0.2965 | | 0.3069 | 0.34 | 1700 | 0.2877 | | 0.3048 | 0.36 | 1800 | 0.2850 | | 0.2916 | 0.38 | 1900 | 0.2817 | | 0.2979 | 0.4 | 2000 | 0.2591 | | 0.2846 | 0.42 | 2100 | 0.2540 | | 0.2568 | 0.44 | 2200 | 0.3389 | | 0.277 | 0.46 | 2300 | 0.2369 | | 0.2385 | 0.48 | 2400 | 0.2238 | | 0.2477 | 0.5 | 2500 | 0.2160 | | 0.2271 | 0.52 | 2600 | 0.2139 | | 0.2457 | 0.54 | 2700 | 0.2024 | | 0.2037 | 0.56 | 2800 | 0.2085 | | 0.1865 | 0.58 | 2900 | 0.1978 | | 0.2354 | 0.6 | 3000 | 0.1929 | | 0.2001 | 0.62 | 3100 | 0.1865 | | 0.2396 | 0.64 | 3200 | 0.1832 | | 0.2197 | 0.66 | 3300 | 0.1790 | | 0.1813 | 0.68 | 3400 | 0.1767 | | 0.2109 | 0.7 | 3500 | 0.1970 | | 0.1956 | 0.72 | 3600 | 0.1658 | | 0.182 | 0.74 | 3700 | 0.1629 | | 0.1916 | 0.76 | 3800 | 0.1610 | | 0.1777 | 0.78 | 3900 | 0.1557 | | 0.2005 | 0.8 | 4000 | 0.1492 | | 0.1553 | 0.82 | 4100 | 0.1530 | | 0.1631 | 0.84 | 4200 | 0.1448 | | 0.1591 | 0.86 | 4300 | 0.1445 | | 0.1499 | 0.88 | 4400 | 0.1427 | | 0.1487 | 0.9 | 4500 | 0.1418 | | 0.1638 | 0.92 | 4600 | 0.1381 | | 0.1745 | 0.94 | 4700 | 0.1390 | | 0.1551 | 0.96 | 4800 | 0.1366 | | 0.1408 | 0.98 | 4900 | 0.1324 | | 0.1254 | 1.0 | 5000 | 0.1356 | ### Framework versions - Transformers 4.22.0.dev0 - Pytorch 1.12.1+cu113 - Tokenizers 0.12.1