--- license: apache-2.0 library_name: transformers base_model: AIDC-AI/Marco-o1 tags: - abliterated - uncensored --- # huihui-ai/Marco-o1-abliterated This is an uncensored version of [AIDC-AI/Marco-o1](https://huggingface.co/AIDC-AI/Marco-o1) created with abliteration (see [remove-refusals-with-transformers](https://github.com/Sumandora/remove-refusals-with-transformers) to know more about it). This is a crude, proof-of-concept implementation to remove refusals from an LLM model without using TransformerLens. ## ollama 1. Download this model. ``` huggingface-cli download huihui-ai/Marco-o1-abliterated --local-dir ./huihui-ai/Marco-o1-abliterated ``` 2. Use the [llama.cpp](https://github.com/ggerganov/llama.cpp) conversion program to convert Marco-o1 to gguf format. ``` python convert_hf_to_gguf.py huihui-ai/Marco-o1-abliterated --outfile huihui-ai/Marco-o1-abliterated/ggml-model-f16.gguf --outtype f16 ``` 3. Use the [llama.cpp](https://github.com/ggerganov/llama.cpp) quantitative program to quantitative model (llama-quantize needs to be compiled.), other [quant option](https://github.com/ggerganov/llama.cpp/blob/master/examples/quantize/quantize.cpp). ``` llama-quantize huihui-ai/Marco-o1-abliterated/ggml-model-f16.gguf huihui-ai/Marco-o1-abliterated/ggml-model-Q4_K_M.gguf Q4_K_M ``` 4. Get Marco-o1 model for reference. ``` ollama pull marco-o1 ``` 5. Export Marco-o1 model parameters. ``` ollama show marco-o1 --modelfile > Modelfile ``` 6. Modify Modelfile, Remove all comment lines (indicated by #) before the "FROM" keyword. Replace the "FROM" with the following content. ``` FROM huihui-ai/Marco-o1-abliterated/ggml-model-Q4_K_M.gguf ``` 7. Use ollama to create the model. ``` ollama create -f Modelfile Marco-o1-abliterated ``` 8. Run the model ``` ollama run Marco-o1-abliterated ```