Edit model card

test-bert-finetuned-ner

This model is a fine-tuned version of bert-base-cased on the conll2003 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0600
  • Precision: 0.9355
  • Recall: 0.9514
  • F1: 0.9433
  • Accuracy: 0.9868

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.0849 1.0 1756 0.0713 0.9144 0.9366 0.9253 0.9817
0.0359 2.0 3512 0.0658 0.9346 0.9500 0.9422 0.9860
0.0206 3.0 5268 0.0600 0.9355 0.9514 0.9433 0.9868

Framework versions

  • Transformers 4.11.0.dev0
  • Pytorch 1.8.1+cu111
  • Datasets 1.12.1.dev0
  • Tokenizers 0.10.3
Downloads last month
1,100

Dataset used to train huggingface-course/bert-finetuned-ner

Spaces using huggingface-course/bert-finetuned-ner 10

Evaluation results