--- license: mit base_model: naver-clova-ix/donut-base library_name: transformers tags: - donut - parser - irs - tax - document AI - '1040' pipeline_tag: image-text-to-text --- # Donut - fine-tuned for US IRS Form 1040 (2023) data parsing and extraction This donut model has been fine-tuned to parse and extract data from IRS (US) tax form 1040 (year 2023). It performs OCR and returns extracted data in JSON format using zero shot prompt. ## Model Details & Description The base model is ['naver-clova-ix/donut-base'][base], the model is finetuned for data parsing and extraction. The added_tokens.json file lists all the labels that can be extracted. For inference use image size width: 1536 px and height: 1536 px # How to Get Started with the Model Use the code below to get started with the model. ```python from transformers import DonutProcessor, VisionEncoderDecoderModel from PIL import Image import torch import re model_name = 'hsarfraz/irs-tax-form-1040-2023-doc-parser' processor = DonutProcessor.from_pretrained(model_name) model = VisionEncoderDecoderModel.from_pretrained(model_name) device = "cuda" if torch.cuda.is_available() else "cpu" model.to(device) model.eval() image_name = 'replace with name of the form 1040 (2023) image file ' img = Image.open(image_name) new_width = 1536 new_height = 1536 # resize input image to finetuned images size img = img.resize((new_width, new_height), Image.LANCZOS) pixel_values = processor(img.convert("RGB"), return_tensors="pt").pixel_values pixel_values = pixel_values.to(device) # prompt task_prompt = "" decoder_input_ids = processor.tokenizer(task_prompt, add_special_tokens=False, return_tensors="pt")["input_ids"] decoder_input_ids = decoder_input_ids.to(device) outputs = model.generate(pixel_values,decoder_input_ids=decoder_input_ids, max_length=model.decoder.config.max_position_embeddings, early_stopping=True, pad_token_id=processor.tokenizer.pad_token_id, eos_token_id=processor.tokenizer.eos_token_id, use_cache=True, num_beams=1, bad_words_ids=[[processor.tokenizer.unk_token_id]], return_dict_in_generate=True, # output_scores=True, ) sequence = processor.batch_decode(outputs.sequences)[0] sequence = sequence.replace(processor.tokenizer.eos_token, "").replace(processor.tokenizer.pad_token, "") sequence = re.sub(r"<.*?>", "", sequence, count=1).strip() # remove first task start token output_json = processor.token2json(sequence) print('----------------------------------') print('--- Parsed data in json format ---') print('----------------------------------') print(output_json) ``` # FAKE Synthetic Form 1040 (2023) for illustration purposes only
FAKE 1040 form for illustration purposes
# Example of json output (based on FAKE 1040 form) ```json { "lbl_0_03": "Michael Evans", "lbl_0_04": "Caldwell", "lbl_0_05": "741-52-5353", "lbl_0_06": "None", "lbl_0_07": "None", "lbl_0_08": "None", "lbl_0_09": "289 Blackwell Land Suite 380 New Tiffany, NH 07548", "lbl_0_11": "East Amandaport", "lbl_0_12": "VI", "lbl_0_13": "47832", "lbl_0_14": "None", "lbl_0_15": "None", "lbl_0_16": "25677", "lbl_0_55": "385321.36", "lbl_0_56": "None", "lbl_0_57": "None", "lbl_0_58": "None", "lbl_0_59": "None", "lbl_0_60": "None", "lbl_0_61": "None", "lbl_0_62": "None", "lbl_0_63": "None", "lbl_0_67": "None", "lbl_0_68": "481161.23", "lbl_0_69": "None", "lbl_0_70": "None", "lbl_0_71": "None", "lbl_0_72": "749100.68", "lbl_0_73": "418381-6", "lbl_0_74": "None", "lbl_0_77": "755042.64", "lbl_0_78": "None", "lbl_0_79": "560928.32", "lbl_0_80": "493913.73", "lbl_0_81": "None", "lbl_0_82": "738597.72", "lbl_0_83": "34990.46" } ``` [base]: https://huggingface.co/naver-clova-ix/donut-base