--- language: - en tags: - automatic-speech-recognition - ahazeemi/librispeech10h - generated_from_trainer datasets: - ahazeemi/librispeech10h metrics: - wer pipeline_tag: automatic-speech-recognition base_model: microsoft/wavlm-large model-index: - name: wavlm-libri-clean-100h-large results: [] --- # wavlm-libri-clean-100h-large This model is a fine-tuned version of [microsoft/wavlm-large](https://huggingface.co/microsoft/wavlm-large) on the AHAZEEMI/LIBRISPEECH10H - CLEAN dataset. It achieves the following results on the evaluation set: - Loss: 0.0893 - Wer: 0.0655 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.0144 | 0.42 | 300 | 0.0947 | 0.0749 | | 0.1408 | 0.84 | 600 | 0.1347 | 0.1363 | | 0.0396 | 1.26 | 900 | 0.1090 | 0.0935 | | 0.0353 | 1.68 | 1200 | 0.1032 | 0.0832 | | 0.051 | 2.1 | 1500 | 0.0969 | 0.0774 | | 0.0254 | 2.52 | 1800 | 0.0930 | 0.0715 | | 0.0579 | 2.94 | 2100 | 0.0894 | 0.0660 | ### Framework versions - Transformers 4.26.1 - Pytorch 2.0.0+cpu - Datasets 2.9.0 - Tokenizers 0.13.2