import torch import torch.nn as nn from transformers import AutoModel class Model(torch.nn.Module): def __init__(self, model_dir, dropout=0.2, hidden_dim=768): """ Initialize the model. :param model_name: the name of the model :param metric_names: the names of the metrics to use :param dropout: the dropout rate :param hidden_dim: the hidden dimension of the model """ super(Model, self).__init__() self.metric_names = ['Happiness', 'Sadness', 'Anger', 'Disgust', 'Fear', 'Pride', 'Valence', 'Arousal'] self.bert = AutoModel.from_pretrained(model_dir) for name in self.metric_names: setattr(self, name, nn.Linear(hidden_dim, 1)) setattr(self, 'l_1_' + name, nn.Linear(hidden_dim, hidden_dim)) self.layer_norm = nn.LayerNorm(hidden_dim) self.relu = nn.ReLU() self.dropout = nn.Dropout(dropout) self.sigmoid = nn.Sigmoid() def forward(self, input_id, mask): """ Forward pass of the model. :param args: the inputs :return: the outputs """ _, x = self.bert(input_ids = input_id, attention_mask=mask, return_dict=False) output = self.rate_embedding(x) return output def rate_embedding(self, x): output_ratings = [] for name in self.metric_names: first_layer = self.relu(self.dropout(self.layer_norm(getattr(self, 'l_1_' + name)(x) + x))) second_layer = self.sigmoid(getattr(self, name)(first_layer)) output_ratings.append(second_layer) return output_ratings def save_pretrained(self, save_directory): self.bert.save_pretrained(save_directory) torch.save(self.state_dict(), f'{save_directory}/pytorch_model.bin') @classmethod def from_pretrained(cls, model_dir, dropout=0.2, hidden_dim=768): model = cls(model_dir, dropout, hidden_dim) state_dict = torch.load(f'{model_dir}/pytorch_model.bin', map_location=torch.device('cpu')) model.load_state_dict(state_dict) return model