""" MIT License Copyright (c) 2021 Wilson Yan Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. This file is copied from https://github.com/wilson1yan/VideoGPT/blob/master/videogpt/vqvae.py We adapted it to Hugging Face AutoModel for easier model loading. """ import os import math import numpy as np import torch import torch.nn as nn import torch.nn.functional as F import torch.distributed as dist from .attention import MultiHeadAttention from ._utils import shift_dim from transformers import PreTrainedModel from .configuration_vqvae import VQVAEConfig class VQVAE(PreTrainedModel): config_class = VQVAEConfig def __init__(self, config): super().__init__(config) self.embedding_dim = config.embedding_dim self.n_codes = config.n_codes self.encoder = Encoder(config.n_hiddens, config.n_res_layers, config.downsample) self.decoder = Decoder(config.n_hiddens, config.n_res_layers, config.downsample) self.pre_vq_conv = SamePadConv3d(config.n_hiddens, config.embedding_dim, 1) self.post_vq_conv = SamePadConv3d(config.embedding_dim, config.n_hiddens, 1) self.codebook = Codebook(config.n_codes, config.embedding_dim) @property def latent_shape(self): input_shape = (self.args.sequence_length, self.args.resolution, self.args.resolution) return tuple([s // d for s, d in zip(input_shape, self.args.downsample)]) def encode(self, x, include_embeddings=False): h = self.pre_vq_conv(self.encoder(x)) vq_output = self.codebook(h) if include_embeddings: return vq_output['encodings'], vq_output['embeddings'] else: return vq_output['encodings'] def decode(self, encodings): h = F.embedding(encodings, self.codebook.embeddings) h = self.post_vq_conv(shift_dim(h, -1, 1)) return self.decoder(h) def forward(self, x): z = self.pre_vq_conv(self.encoder(x)) vq_output = self.codebook(z) x_recon = self.decoder(self.post_vq_conv(vq_output['embeddings'])) recon_loss = F.mse_loss(x_recon, x) / 0.06 return recon_loss, x_recon, vq_output class AxialBlock(nn.Module): def __init__(self, n_hiddens, n_head): super().__init__() kwargs = dict(shape=(0,) * 3, dim_q=n_hiddens, dim_kv=n_hiddens, n_head=n_head, n_layer=1, causal=False, attn_type='axial') self.attn_w = MultiHeadAttention(attn_kwargs=dict(axial_dim=-2), **kwargs) self.attn_h = MultiHeadAttention(attn_kwargs=dict(axial_dim=-3), **kwargs) self.attn_t = MultiHeadAttention(attn_kwargs=dict(axial_dim=-4), **kwargs) def forward(self, x): x = shift_dim(x, 1, -1) x = self.attn_w(x, x, x) + self.attn_h(x, x, x) + self.attn_t(x, x, x) x = shift_dim(x, -1, 1) return x class AttentionResidualBlock(nn.Module): def __init__(self, n_hiddens): super().__init__() self.block = nn.Sequential( nn.BatchNorm3d(n_hiddens), nn.ReLU(), SamePadConv3d(n_hiddens, n_hiddens // 2, 3, bias=False), nn.BatchNorm3d(n_hiddens // 2), nn.ReLU(), SamePadConv3d(n_hiddens // 2, n_hiddens, 1, bias=False), nn.BatchNorm3d(n_hiddens), nn.ReLU(), AxialBlock(n_hiddens, 2) ) def forward(self, x): return x + self.block(x) class Codebook(nn.Module): def __init__(self, n_codes, embedding_dim): super().__init__() self.register_buffer('embeddings', torch.randn(n_codes, embedding_dim)) self.register_buffer('N', torch.zeros(n_codes)) self.register_buffer('z_avg', self.embeddings.data.clone()) self.n_codes = n_codes self.embedding_dim = embedding_dim self._need_init = True def _tile(self, x): d, ew = x.shape if d < self.n_codes: n_repeats = (self.n_codes + d - 1) // d std = 0.01 / np.sqrt(ew) x = x.repeat(n_repeats, 1) x = x + torch.randn_like(x) * std return x def _init_embeddings(self, z): # z: [b, c, t, h, w] self._need_init = False flat_inputs = shift_dim(z, 1, -1).flatten(end_dim=-2) y = self._tile(flat_inputs) d = y.shape[0] _k_rand = y[torch.randperm(y.shape[0])][:self.n_codes] if dist.is_initialized(): dist.broadcast(_k_rand, 0) self.embeddings.data.copy_(_k_rand) self.z_avg.data.copy_(_k_rand) self.N.data.copy_(torch.ones(self.n_codes)) def forward(self, z): # z: [b, c, t, h, w] if self._need_init and self.training: self._init_embeddings(z) flat_inputs = shift_dim(z, 1, -1).flatten(end_dim=-2) distances = (flat_inputs ** 2).sum(dim=1, keepdim=True) \ - 2 * flat_inputs @ self.embeddings.t() \ + (self.embeddings.t() ** 2).sum(dim=0, keepdim=True) encoding_indices = torch.argmin(distances, dim=1) encode_onehot = F.one_hot(encoding_indices, self.n_codes).type_as(flat_inputs) encoding_indices = encoding_indices.view(z.shape[0], *z.shape[2:]) embeddings = F.embedding(encoding_indices, self.embeddings) embeddings = shift_dim(embeddings, -1, 1) commitment_loss = 0.25 * F.mse_loss(z, embeddings.detach()) # EMA codebook update if self.training: n_total = encode_onehot.sum(dim=0) encode_sum = flat_inputs.t() @ encode_onehot if dist.is_initialized(): dist.all_reduce(n_total) dist.all_reduce(encode_sum) self.N.data.mul_(0.99).add_(n_total, alpha=0.01) self.z_avg.data.mul_(0.99).add_(encode_sum.t(), alpha=0.01) n = self.N.sum() weights = (self.N + 1e-7) / (n + self.n_codes * 1e-7) * n encode_normalized = self.z_avg / weights.unsqueeze(1) self.embeddings.data.copy_(encode_normalized) y = self._tile(flat_inputs) _k_rand = y[torch.randperm(y.shape[0])][:self.n_codes] if dist.is_initialized(): dist.broadcast(_k_rand, 0) usage = (self.N.view(self.n_codes, 1) >= 1).float() self.embeddings.data.mul_(usage).add_(_k_rand * (1 - usage)) embeddings_st = (embeddings - z).detach() + z avg_probs = torch.mean(encode_onehot, dim=0) perplexity = torch.exp(-torch.sum(avg_probs * torch.log(avg_probs + 1e-10))) return dict(embeddings=embeddings_st, encodings=encoding_indices, commitment_loss=commitment_loss, perplexity=perplexity) def dictionary_lookup(self, encodings): embeddings = F.embedding(encodings, self.embeddings) return embeddings class Encoder(nn.Module): def __init__(self, n_hiddens, n_res_layers, downsample): super().__init__() n_times_downsample = np.array([int(math.log2(d)) for d in downsample]) self.convs = nn.ModuleList() max_ds = n_times_downsample.max() for i in range(max_ds): in_channels = 3 if i == 0 else n_hiddens stride = tuple([2 if d > 0 else 1 for d in n_times_downsample]) conv = SamePadConv3d(in_channels, n_hiddens, 4, stride=stride) self.convs.append(conv) n_times_downsample -= 1 self.conv_last = SamePadConv3d(in_channels, n_hiddens, kernel_size=3) self.res_stack = nn.Sequential( *[AttentionResidualBlock(n_hiddens) for _ in range(n_res_layers)], nn.BatchNorm3d(n_hiddens), nn.ReLU() ) def forward(self, x): h = x for conv in self.convs: h = F.relu(conv(h)) h = self.conv_last(h) h = self.res_stack(h) return h class Decoder(nn.Module): def __init__(self, n_hiddens, n_res_layers, upsample): super().__init__() self.res_stack = nn.Sequential( *[AttentionResidualBlock(n_hiddens) for _ in range(n_res_layers)], nn.BatchNorm3d(n_hiddens), nn.ReLU() ) n_times_upsample = np.array([int(math.log2(d)) for d in upsample]) max_us = n_times_upsample.max() self.convts = nn.ModuleList() for i in range(max_us): out_channels = 3 if i == max_us - 1 else n_hiddens us = tuple([2 if d > 0 else 1 for d in n_times_upsample]) convt = SamePadConvTranspose3d(n_hiddens, out_channels, 4, stride=us) self.convts.append(convt) n_times_upsample -= 1 def forward(self, x): h = self.res_stack(x) for i, convt in enumerate(self.convts): h = convt(h) if i < len(self.convts) - 1: h = F.relu(h) return h # Does not support dilation class SamePadConv3d(nn.Module): def __init__(self, in_channels, out_channels, kernel_size, stride=1, bias=True): super().__init__() if isinstance(kernel_size, int): kernel_size = (kernel_size,) * 3 if isinstance(stride, int): stride = (stride,) * 3 # assumes that the input shape is divisible by stride total_pad = tuple([k - s for k, s in zip(kernel_size, stride)]) pad_input = [] for p in total_pad[::-1]: # reverse since F.pad starts from last dim pad_input.append((p // 2 + p % 2, p // 2)) pad_input = sum(pad_input, tuple()) self.pad_input = pad_input self.conv = nn.Conv3d(in_channels, out_channels, kernel_size, stride=stride, padding=0, bias=bias) def forward(self, x): return self.conv(F.pad(x, self.pad_input)) class SamePadConvTranspose3d(nn.Module): def __init__(self, in_channels, out_channels, kernel_size, stride=1, bias=True): super().__init__() if isinstance(kernel_size, int): kernel_size = (kernel_size,) * 3 if isinstance(stride, int): stride = (stride,) * 3 total_pad = tuple([k - s for k, s in zip(kernel_size, stride)]) pad_input = [] for p in total_pad[::-1]: # reverse since F.pad starts from last dim pad_input.append((p // 2 + p % 2, p // 2)) pad_input = sum(pad_input, tuple()) self.pad_input = pad_input self.convt = nn.ConvTranspose3d(in_channels, out_channels, kernel_size, stride=stride, bias=bias, padding=tuple([k - 1 for k in kernel_size])) def forward(self, x): return self.convt(F.pad(x, self.pad_input))