""" MIT License Copyright (c) 2021 Wilson Yan Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. This file is copied from https://github.com/wilson1yan/VideoGPT/blob/master/videogpt/attention.py We adapted it to Hugging Face AutoModel for easier model loading. """ import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from torch.utils.checkpoint import checkpoint from ._utils import shift_dim, view_range, tensor_slice class AttentionStack(nn.Module): def __init__( self, shape, embd_dim, n_head, n_layer, dropout, attn_type, attn_dropout, class_cond_dim, frame_cond_shape, ): super().__init__() self.shape = shape self.embd_dim = embd_dim self.use_frame_cond = frame_cond_shape is not None self.right_shift = RightShift(embd_dim) self.pos_embd = AddBroadcastPosEmbed( shape=shape, embd_dim=embd_dim ) self.attn_nets = nn.ModuleList( [ AttentionBlock( shape=shape, embd_dim=embd_dim, n_head=n_head, n_layer=n_layer, dropout=dropout, attn_type=attn_type, attn_dropout=attn_dropout, class_cond_dim=class_cond_dim, frame_cond_shape=frame_cond_shape ) for i in range(n_layer) ] ) def forward(self, x, cond, decode_step, decode_idx): """ Args ------ x: (b, d1, d2, ..., dn, embd_dim) cond: a dictionary of conditioning tensors (below is used only when sampling for fast decoding) decode: the enumerated rasterscan order of the current idx being sampled decode_step: a tuple representing the current idx being sampled """ x = self.right_shift(x, decode_step) x = self.pos_embd(x, decode_step, decode_idx) for net in self.attn_nets: x = net(x, cond, decode_step, decode_idx) return x class AttentionBlock(nn.Module): def __init__(self, shape, embd_dim, n_head, n_layer, dropout, attn_type, attn_dropout, class_cond_dim, frame_cond_shape): super().__init__() self.use_frame_cond = frame_cond_shape is not None self.pre_attn_norm = LayerNorm(embd_dim, class_cond_dim) self.post_attn_dp = nn.Dropout(dropout) self.attn = MultiHeadAttention(shape, embd_dim, embd_dim, n_head, n_layer, causal=True, attn_type=attn_type, attn_kwargs=dict(attn_dropout=attn_dropout)) if frame_cond_shape is not None: enc_len = np.prod(frame_cond_shape[:-1]) self.pre_enc_norm = LayerNorm(embd_dim, class_cond_dim) self.post_enc_dp = nn.Dropout(dropout) self.enc_attn = MultiHeadAttention(shape, embd_dim, frame_cond_shape[-1], n_head, n_layer, attn_type='full', attn_kwargs=dict(attn_dropout=0.), causal=False) self.pre_fc_norm = LayerNorm(embd_dim, class_cond_dim) self.post_fc_dp = nn.Dropout(dropout) self.fc_block = nn.Sequential( nn.Linear(in_features=embd_dim, out_features=embd_dim * 4), GeLU2(), nn.Linear(in_features=embd_dim * 4, out_features=embd_dim), ) def forward(self, x, cond, decode_step, decode_idx): h = self.pre_attn_norm(x, cond) if self.training: h = checkpoint(self.attn, h, h, h, decode_step, decode_idx) else: h = self.attn(h, h, h, decode_step, decode_idx) h = self.post_attn_dp(h) x = x + h if self.use_frame_cond: h = self.pre_enc_norm(x, cond) if self.training: h = checkpoint(self.enc_attn, h, cond['frame_cond'], cond['frame_cond'], decode_step, decode_idx) else: h = self.enc_attn(h, cond['frame_cond'], cond['frame_cond'], decode_step, decode_idx) h = self.post_enc_dp(h) x = x + h h = self.pre_fc_norm(x, cond) if self.training: h = checkpoint(self.fc_block, h) else: h = self.fc_block(h) h = self.post_fc_dp(h) x = x + h return x class MultiHeadAttention(nn.Module): def __init__(self, shape, dim_q, dim_kv, n_head, n_layer, causal, attn_type, attn_kwargs): super().__init__() self.causal = causal self.shape = shape self.d_k = dim_q // n_head self.d_v = dim_kv // n_head self.n_head = n_head self.w_qs = nn.Linear(dim_q, n_head * self.d_k, bias=False) # q self.w_qs.weight.data.normal_(std=1.0 / np.sqrt(dim_q)) self.w_ks = nn.Linear(dim_kv, n_head * self.d_k, bias=False) # k self.w_ks.weight.data.normal_(std=1.0 / np.sqrt(dim_kv)) self.w_vs = nn.Linear(dim_kv, n_head * self.d_v, bias=False) # v self.w_vs.weight.data.normal_(std=1.0 / np.sqrt(dim_kv)) self.fc = nn.Linear(n_head * self.d_v, dim_q, bias=True) # c self.fc.weight.data.normal_(std=1.0 / np.sqrt(dim_q * n_layer)) if attn_type == 'full': self.attn = FullAttention(shape, causal, **attn_kwargs) elif attn_type == 'axial': assert not causal, 'causal axial attention is not supported' self.attn = AxialAttention(len(shape), **attn_kwargs) elif attn_type == 'sparse': self.attn = SparseAttention(shape, n_head, causal, **attn_kwargs) self.cache = None def forward(self, q, k, v, decode_step=None, decode_idx=None): """ Compute multi-head attention Args q, k, v: a [b, d1, ..., dn, c] tensor or a [b, 1, ..., 1, c] tensor if decode_step is not None Returns The output after performing attention """ # compute k, q, v d_k, d_v, n_head = self.d_k, self.d_v, self.n_head q = view_range(self.w_qs(q), -1, None, (n_head, d_k)) k = view_range(self.w_ks(k), -1, None, (n_head, d_k)) v = view_range(self.w_vs(v), -1, None, (n_head, d_v)) # b x n_head x seq_len x d # (b, *d_shape, n_head, d) -> (b, n_head, *d_shape, d) q = shift_dim(q, -2, 1) k = shift_dim(k, -2, 1) v = shift_dim(v, -2, 1) # fast decoding if decode_step is not None: if decode_step == 0: if self.causal: k_shape = (q.shape[0], n_head, *self.shape, self.d_k) v_shape = (q.shape[0], n_head, *self.shape, self.d_v) self.cache = dict(k=torch.zeros(k_shape, dtype=k.dtype, device=q.device), v=torch.zeros(v_shape, dtype=v.dtype, device=q.device)) else: # cache only once in the non-causal case self.cache = dict(k=k.clone(), v=v.clone()) if self.causal: idx = (slice(None, None), slice(None, None), *[slice(i, i+ 1) for i in decode_idx]) self.cache['k'][idx] = k self.cache['v'][idx] = v k, v = self.cache['k'], self.cache['v'] a = self.attn(q, k, v, decode_step, decode_idx) # (b, *d_shape, n_head, d) -> (b, *d_shape, n_head * d) a = shift_dim(a, 1, -2).flatten(start_dim=-2) a = self.fc(a) # (b x seq_len x embd_dim) return a ############## Attention ####################### class FullAttention(nn.Module): def __init__(self, shape, causal, attn_dropout): super().__init__() self.causal = causal self.attn_dropout = attn_dropout seq_len = np.prod(shape) if self.causal: self.register_buffer('mask', torch.tril(torch.ones(seq_len, seq_len))) def forward(self, q, k, v, decode_step, decode_idx): mask = self.mask if self.causal else None if decode_step is not None and mask is not None: mask = mask[[decode_step]] old_shape = q.shape[2:-1] q = q.flatten(start_dim=2, end_dim=-2) k = k.flatten(start_dim=2, end_dim=-2) v = v.flatten(start_dim=2, end_dim=-2) out = scaled_dot_product_attention(q, k, v, mask=mask, attn_dropout=self.attn_dropout, training=self.training) return view_range(out, 2, 3, old_shape) class AxialAttention(nn.Module): def __init__(self, n_dim, axial_dim): super().__init__() if axial_dim < 0: axial_dim = 2 + n_dim + 1 + axial_dim else: axial_dim += 2 # account for batch, head, dim self.axial_dim = axial_dim def forward(self, q, k, v, decode_step, decode_idx): q = shift_dim(q, self.axial_dim, -2).flatten(end_dim=-3) k = shift_dim(k, self.axial_dim, -2).flatten(end_dim=-3) v = shift_dim(v, self.axial_dim, -2) old_shape = list(v.shape) v = v.flatten(end_dim=-3) out = scaled_dot_product_attention(q, k, v, training=self.training) out = out.view(*old_shape) out = shift_dim(out, -2, self.axial_dim) return out class SparseAttention(nn.Module): ops = dict() attn_mask = dict() block_layout = dict() def __init__(self, shape, n_head, causal, num_local_blocks=4, block=32, attn_dropout=0.): # does not use attn_dropout super().__init__() self.causal = causal self.shape = shape self.sparsity_config = StridedSparsityConfig(shape=shape, n_head=n_head, causal=causal, block=block, num_local_blocks=num_local_blocks) if self.shape not in SparseAttention.block_layout: SparseAttention.block_layout[self.shape] = self.sparsity_config.make_layout() if causal and self.shape not in SparseAttention.attn_mask: SparseAttention.attn_mask[self.shape] = self.sparsity_config.make_sparse_attn_mask() def get_ops(self): try: from deepspeed.ops.sparse_attention import MatMul, Softmax except: raise Exception('Error importing deepspeed. Please install using `DS_BUILD_SPARSE_ATTN=1 pip install deepspeed`') if self.shape not in SparseAttention.ops: sparsity_layout = self.sparsity_config.make_layout() sparse_dot_sdd_nt = MatMul(sparsity_layout, self.sparsity_config.block, 'sdd', trans_a=False, trans_b=True) sparse_dot_dsd_nn = MatMul(sparsity_layout, self.sparsity_config.block, 'dsd', trans_a=False, trans_b=False) sparse_softmax = Softmax(sparsity_layout, self.sparsity_config.block) SparseAttention.ops[self.shape] = (sparse_dot_sdd_nt, sparse_dot_dsd_nn, sparse_softmax) return SparseAttention.ops[self.shape] def forward(self, q, k, v, decode_step, decode_idx): if self.training and self.shape not in SparseAttention.ops: self.get_ops() SparseAttention.block_layout[self.shape] = SparseAttention.block_layout[self.shape].to(q) if self.causal: SparseAttention.attn_mask[self.shape] = SparseAttention.attn_mask[self.shape].to(q).type_as(q) attn_mask = SparseAttention.attn_mask[self.shape] if self.causal else None old_shape = q.shape[2:-1] q = q.flatten(start_dim=2, end_dim=-2) k = k.flatten(start_dim=2, end_dim=-2) v = v.flatten(start_dim=2, end_dim=-2) if decode_step is not None: mask = self.sparsity_config.get_non_block_layout_row(SparseAttention.block_layout[self.shape], decode_step) out = scaled_dot_product_attention(q, k, v, mask=mask, training=self.training) else: if q.shape != k.shape or k.shape != v.shape: raise Exception('SparseAttention only support self-attention') sparse_dot_sdd_nt, sparse_dot_dsd_nn, sparse_softmax = self.get_ops() scaling = float(q.shape[-1]) ** -0.5 attn_output_weights = sparse_dot_sdd_nt(q, k) if attn_mask is not None: attn_output_weights = attn_output_weights.masked_fill(attn_mask == 0, float('-inf')) attn_output_weights = sparse_softmax( attn_output_weights, scale=scaling ) out = sparse_dot_dsd_nn(attn_output_weights, v) return view_range(out, 2, 3, old_shape) class StridedSparsityConfig(object): """ Strided Sparse configuration specified in https://arxiv.org/abs/1904.10509 that generalizes to arbitrary dimensions """ def __init__(self, shape, n_head, causal, block, num_local_blocks): self.n_head = n_head self.shape = shape self.causal = causal self.block = block self.num_local_blocks = num_local_blocks assert self.num_local_blocks >= 1, 'Must have at least 1 local block' assert self.seq_len % self.block == 0, 'seq len must be divisible by block size' self._block_shape = self._compute_block_shape() self._block_shape_cum = self._block_shape_cum_sizes() @property def seq_len(self): return np.prod(self.shape) @property def num_blocks(self): return self.seq_len // self.block def set_local_layout(self, layout): num_blocks = self.num_blocks for row in range(0, num_blocks): end = min(row + self.num_local_blocks, num_blocks) for col in range( max(0, row - self.num_local_blocks), (row + 1 if self.causal else end)): layout[:, row, col] = 1 return layout def set_global_layout(self, layout): num_blocks = self.num_blocks n_dim = len(self._block_shape) for row in range(num_blocks): assert self._to_flattened_idx(self._to_unflattened_idx(row)) == row cur_idx = self._to_unflattened_idx(row) # no strided attention over last dim for d in range(n_dim - 1): end = self._block_shape[d] for i in range(0, (cur_idx[d] + 1 if self.causal else end)): new_idx = list(cur_idx) new_idx[d] = i new_idx = tuple(new_idx) col = self._to_flattened_idx(new_idx) layout[:, row, col] = 1 return layout def make_layout(self): layout = torch.zeros((self.n_head, self.num_blocks, self.num_blocks), dtype=torch.int64) layout = self.set_local_layout(layout) layout = self.set_global_layout(layout) return layout def make_sparse_attn_mask(self): block_layout = self.make_layout() assert block_layout.shape[1] == block_layout.shape[2] == self.num_blocks num_dense_blocks = block_layout.sum().item() attn_mask = torch.ones(num_dense_blocks, self.block, self.block) counter = 0 for h in range(self.n_head): for i in range(self.num_blocks): for j in range(self.num_blocks): elem = block_layout[h, i, j].item() if elem == 1: assert i >= j if i == j: # need to mask within block on diagonals attn_mask[counter] = torch.tril(attn_mask[counter]) counter += 1 assert counter == num_dense_blocks return attn_mask.unsqueeze(0) def get_non_block_layout_row(self, block_layout, row): block_row = row // self.block block_row = block_layout[:, [block_row]] # n_head x 1 x n_blocks block_row = block_row.repeat_interleave(self.block, dim=-1) block_row[:, :, row + 1:] = 0. return block_row ############# Helper functions ########################## def _compute_block_shape(self): n_dim = len(self.shape) cum_prod = 1 for i in range(n_dim - 1, -1, -1): cum_prod *= self.shape[i] if cum_prod > self.block: break assert cum_prod % self.block == 0 new_shape = (*self.shape[:i], cum_prod // self.block) assert np.prod(new_shape) == np.prod(self.shape) // self.block return new_shape def _block_shape_cum_sizes(self): bs = np.flip(np.array(self._block_shape)) return tuple(np.flip(np.cumprod(bs)[:-1])) + (1,) def _to_flattened_idx(self, idx): assert len(idx) == len(self._block_shape), f"{len(idx)} != {len(self._block_shape)}" flat_idx = 0 for i in range(len(self._block_shape)): flat_idx += idx[i] * self._block_shape_cum[i] return flat_idx def _to_unflattened_idx(self, flat_idx): assert flat_idx < np.prod(self._block_shape) idx = [] for i in range(len(self._block_shape)): idx.append(flat_idx // self._block_shape_cum[i]) flat_idx %= self._block_shape_cum[i] return tuple(idx) ################ Spatiotemporal broadcasted positional embeddings ############### class AddBroadcastPosEmbed(nn.Module): def __init__(self, shape, embd_dim, dim=-1): super().__init__() assert dim in [-1, 1] # only first or last dim supported self.shape = shape self.n_dim = n_dim = len(shape) self.embd_dim = embd_dim self.dim = dim assert embd_dim % n_dim == 0, f"{embd_dim} % {n_dim} != 0" self.emb = nn.ParameterDict({ f'd_{i}': nn.Parameter(torch.randn(shape[i], embd_dim // n_dim) * 0.01 if dim == -1 else torch.randn(embd_dim // n_dim, shape[i]) * 0.01) for i in range(n_dim) }) def forward(self, x, decode_step=None, decode_idx=None): embs = [] for i in range(self.n_dim): e = self.emb[f'd_{i}'] if self.dim == -1: # (1, 1, ..., 1, self.shape[i], 1, ..., -1) e = e.view(1, *((1,) * i), self.shape[i], *((1,) * (self.n_dim - i - 1)), -1) e = e.expand(1, *self.shape, -1) else: e = e.view(1, -1, *((1,) * i), self.shape[i], *((1,) * (self.n_dim - i - 1))) e = e.expand(1, -1, *self.shape) embs.append(e) embs = torch.cat(embs, dim=self.dim) if decode_step is not None: embs = tensor_slice(embs, [0, *decode_idx, 0], [x.shape[0], *(1,) * self.n_dim, x.shape[-1]]) return x + embs ################# Helper Functions ################################### def scaled_dot_product_attention(q, k, v, mask=None, attn_dropout=0., training=True): # Performs scaled dot-product attention over the second to last dimension dn # (b, n_head, d1, ..., dn, d) attn = torch.matmul(q, k.transpose(-1, -2)) attn = attn / np.sqrt(q.shape[-1]) if mask is not None: attn = attn.masked_fill(mask == 0, float('-inf')) attn_float = F.softmax(attn, dim=-1) attn = attn_float.type_as(attn) # b x n_head x d1 x ... x dn x d attn = F.dropout(attn, p=attn_dropout, training=training) a = torch.matmul(attn, v) # b x n_head x d1 x ... x dn x d return a class RightShift(nn.Module): def __init__(self, embd_dim): super().__init__() self.embd_dim = embd_dim self.sos = nn.Parameter(torch.FloatTensor(embd_dim).normal_(std=0.02), requires_grad=True) def forward(self, x, decode_step): if decode_step is not None and decode_step > 0: return x x_shape = list(x.shape) x = x.flatten(start_dim=1, end_dim=-2) # (b, seq_len, embd_dim) sos = torch.ones(x_shape[0], 1, self.embd_dim, dtype=torch.float32).to(self.sos) * self.sos sos = sos.type_as(x) x = torch.cat([sos, x[:, :-1, :]], axis=1) x = x.view(*x_shape) return x class GeLU2(nn.Module): def forward(self, x): return (1.702 * x).sigmoid() * x class LayerNorm(nn.Module): def __init__(self, embd_dim, class_cond_dim): super().__init__() self.conditional = class_cond_dim is not None if self.conditional: self.w = nn.Linear(class_cond_dim, embd_dim, bias=False) nn.init.constant_(self.w.weight.data, 1. / np.sqrt(class_cond_dim)) self.wb = nn.Linear(class_cond_dim, embd_dim, bias=False) else: self.g = nn.Parameter(torch.ones(embd_dim, dtype=torch.float32), requires_grad=True) self.b = nn.Parameter(torch.zeros(embd_dim, dtype=torch.float32), requires_grad=True) def forward(self, x, cond): if self.conditional: # (b, cond_dim) g = 1 + self.w(cond['class_cond']).view(x.shape[0], *(1,)*(len(x.shape)-2), x.shape[-1]) # (b, ..., embd_dim) b = self.wb(cond['class_cond']).view(x.shape[0], *(1,)*(len(x.shape)-2), x.shape[-1]) else: g = self.g # (embd_dim,) b = self.b x_float = x.float() mu = x_float.mean(dim=-1, keepdims=True) s = (x_float - mu).square().mean(dim=-1, keepdims=True) x_float = (x_float - mu) * (1e-5 + s.rsqrt()) # (b, ..., embd_dim) x_float = x_float * g + b x = x_float.type_as(x) return x