--- license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - image-classification - generated_from_trainer datasets: - generator metrics: - accuracy - f1 model-index: - name: stool-condition-classification results: - task: name: Image Classification type: image-classification dataset: name: stool-image type: generator config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.8580527752502275 - name: F1 type: f1 value: 0.8173302107728336 --- # stool-condition-classification This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the stool-image dataset. It achieves the following results on the evaluation set: - Loss: 0.3669 - Auroc: 0.9121 - Accuracy: 0.8581 - Sensitivity: 0.7756 - Specificty: 0.9153 - F1: 0.8173 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Auroc | Accuracy | Sensitivity | Specificty | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:|:--------:|:-----------:|:----------:|:------:| | 0.4071 | 0.98 | 100 | 0.4415 | 0.8876 | 0.8179 | 0.6629 | 0.9552 | 0.7738 | ### Framework versions - Transformers 4.36.1 - Pytorch 2.0.1 - Datasets 2.15.0 - Tokenizers 0.15.0