--- language: - ko --- ## KoRean based Bert pre-trained (KR-BERT) This is a release of Korean-specific, small-scale BERT models with comparable or better performances developed by Computational Linguistics Lab at Seoul National University, referenced in [KR-BERT: A Small-Scale Korean-Specific Language Model](https://arxiv.org/abs/2008.03979).
### Vocab, Parameters and Data | | Mulitlingual BERT
(Google) | KorBERT
(ETRI) | KoBERT
(SKT) | KR-BERT character | KR-BERT sub-character | | -------------: | ---------------------------------------------: | ---------------------: | ----------------------------------: | -------------------------------------: | -------------------------------------: | | vocab size | 119,547 | 30,797 | 8,002 | 16,424 | 12,367 | | parameter size | 167,356,416 | 109,973,391 | 92,186,880 | 99,265,066 | 96,145,233 | | data size | -
(The Wikipedia data
for 104 languages) | 23GB
4.7B morphemes | -
(25M sentences,
233M words) | 2.47GB
20M sentences,
233M words | 2.47GB
20M sentences,
233M words | | Model | Masked LM Accuracy | | ------------------------------------------- | ------------------ | | KoBERT | 0.750 | | KR-BERT character BidirectionalWordPiece | **0.779** | | KR-BERT sub-character BidirectionalWordPiece | 0.769 |
### Sub-character Korean text is basically represented with Hangul syllable characters, which can be decomposed into sub-characters, or graphemes. To accommodate such characteristics, we trained a new vocabulary and BERT model on two different representations of a corpus: syllable characters and sub-characters. In case of using our sub-character model, you should preprocess your data with the code below. ```python import torch from transformers import BertConfig, BertModel, BertForPreTraining, BertTokenizer from unicodedata import normalize tokenizer_krbert = BertTokenizer.from_pretrained('/path/to/vocab_file.txt', do_lower_case=False) # convert a string into sub-char def to_subchar(string): return normalize('NFKD', string) sentence = '토크나이저 예시입니다.' print(tokenizer_krbert.tokenize(to_subchar(sentence))) ``` ### Tokenization #### BidirectionalWordPiece Tokenizer We use the BidirectionalWordPiece model to reduce search costs while maintaining the possibility of choice. This model applies BPE in both forward and backward directions to obtain two candidates and chooses the one that has a higher frequency. | | Mulitlingual BERT | KorBERT
character | KoBERT | KR-BERT
character
WordPiece | KR-BERT
character
BidirectionalWordPiece | KR-BERT
sub-character
WordPiece | KR-BERT
sub-character
BidirectionalWordPiece | | :-------------------------------------: | :-----------------------: | :-----------------------: | :-----------------------: | :------------------------------: | :-------------------------------------------: | :----------------------------------: | :-----------------------------------------------: | | 냉장고
nayngcangko
"refrigerator" | 냉#장#고
nayng#cang#ko | 냉#장#고
nayng#cang#ko | 냉#장#고
nayng#cang#ko | 냉장고
nayngcangko | 냉장고
nayngcangko | 냉장고
nayngcangko | 냉장고
nayngcangko | | 춥다
chwupta
"cold" | [UNK] | 춥#다
chwup#ta | 춥#다
chwup#ta | 춥#다
chwup#ta | 춥#다
chwup#ta | 추#ㅂ다
chwu#pta | 추#ㅂ다
chwu#pta | | 뱃사람
paytsalam
"seaman" | [UNK] | 뱃#사람
payt#salam | 뱃#사람
payt#salam | 뱃#사람
payt#salam | 뱃#사람
payt#salam | 배#ㅅ#사람
pay#t#salam | 배#ㅅ#사람
pay#t#salam | | 마이크
maikhu
"microphone" | 마#이#크
ma#i#khu | 마이#크
mai#khu | 마#이#크
ma#i#khu | 마이크
maikhu | 마이크
maikhu | 마이크
maikhu | 마이크
maikhu |
### Models | | TensorFlow | | PyTorch | | |:---:|:-------------------------------:|:----------------------------:|:----------------------------:|:----------------------------:| | | character | sub-character | character | sub-character | | WordPiece
tokenizer | [WP char](https://drive.google.com/open?id=1SG5m-3R395VjEEnt0wxWM7SE1j6ndVsX) | [WP subchar](https://drive.google.com/open?id=13oguhQvYD9wsyLwKgU-uLCacQVWA4oHg) | [WP char](https://drive.google.com/file/d/18lsZzx_wonnOezzB5QxqSliA2KL5BF0x/view?usp=sharing) | [WP subchar](https://drive.google.com/open?id=1c1en4AMlCv2k7QapIzqjefnYzNOoh5KZ) | Bidirectional
WordPiece
tokenizer | [BiWP char](https://drive.google.com/open?id=1YhFobehwzdbIxsHHvyFU5okp-HRowRKS) | [BiWP subchar](https://drive.google.com/open?id=12izU0NZXNz9I6IsnknUbencgr7gWHDeM) | [BiWP char](https://drive.google.com/open?id=1C87CCHD9lOQhdgWPkMw_6ZD5M2km7f1p) | [BiWP subchar](https://drive.google.com/file/d/1JvNYFQyb20SWgOiDxZn6h1-n_fjTU25S/view?usp=sharing)
### Requirements - transformers == 2.1.1 - tensorflow < 2.0
## Downstream tasks ### Naver Sentiment Movie Corpus (NSMC) * If you want to use the sub-character version of our models, let the `subchar` argument be `True`. * And you can use the original BERT WordPiece tokenizer by entering `bert` for the `tokenizer` argument, and if you use `ranked` you can use our BidirectionalWordPiece tokenizer. * tensorflow: After downloading our pretrained models, put them in a `models` directory in the `krbert_tensorflow` directory. * pytorch: After downloading our pretrained models, put them in a `pretrained` directory in the `krbert_pytorch` directory. ```sh # pytorch python3 train.py --subchar {True, False} --tokenizer {bert, ranked} # tensorflow python3 run_classifier.py \ --task_name=NSMC \ --subchar={True, False} \ --tokenizer={bert, ranked} \ --do_train=true \ --do_eval=true \ --do_predict=true \ --do_lower_case=False\ --max_seq_length=128 \ --train_batch_size=128 \ --learning_rate=5e-05 \ --num_train_epochs=5.0 \ --output_dir={output_dir} ``` The pytorch code structure refers to that of https://github.com/aisolab/nlp_implementation .
### NSMC Acc. | | multilingual BERT | KorBERT | KoBERT | KR-BERT character WordPiece | KR-BERT
character Bidirectional WordPiece | KR-BERT sub-character WordPiece | KR-BERT
sub-character Bidirectional WordPiece | |:-----:|-------------------:|----------------:|--------:|----------------------------:|-----------------------------------------:|--------------------------------:|---------------------------------------------:| | pytorch | - | **89.84** | 89.01 | 89.34 | **89.38** | 89.20 | 89.34 | | tensorflow | 87.08 | 85.94 | n/a | 89.86 | **90.10** | 89.76 | 89.86 |
## Citation If you use these models, please cite the following paper: ``` @article{lee2020krbert, title={KR-BERT: A Small-Scale Korean-Specific Language Model}, author={Sangah Lee and Hansol Jang and Yunmee Baik and Suzi Park and Hyopil Shin}, year={2020}, journal={ArXiv}, volume={abs/2008.03979} } ```
## Contacts nlp.snu@gmail.com