--- license: apache-2.0 tags: - generated_from_trainer datasets: - model_eng metrics: - wer model-index: - name: VoiceMath-Tiny results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: model_eng type: model_eng config: default split: None args: default metrics: - name: Wer type: wer value: 9.442870632672333 --- # VoiceMath-Tiny This model is a fine-tuned version of [openai/whisper-tiny.en](https://huggingface.co/openai/whisper-tiny.en) on the model_eng dataset. It achieves the following results on the evaluation set: - Loss: 0.0162 - Wer: 9.4429 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | No log | 1.0 | 15 | 0.2506 | 15.9585 | | No log | 2.0 | 30 | 0.1447 | 13.9754 | | No log | 3.0 | 45 | 0.0945 | 11.4259 | | No log | 4.0 | 60 | 0.0657 | 11.7092 | | No log | 5.0 | 75 | 0.0480 | 11.4259 | | No log | 6.0 | 90 | 0.0322 | 9.9150 | | No log | 7.0 | 105 | 0.0243 | 10.1983 | | No log | 8.0 | 120 | 0.0196 | 9.2540 | | No log | 9.0 | 135 | 0.0171 | 9.4429 | | No log | 10.0 | 150 | 0.0162 | 9.4429 | ### Framework versions - Transformers 4.30.0.dev0 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.13.3