diff --git "a/trainer_log.jsonl" "b/trainer_log.jsonl" --- "a/trainer_log.jsonl" +++ "b/trainer_log.jsonl" @@ -1,225 +1,1313 @@ -{"current_steps": 5, "total_steps": 1110, "loss": 0.6946, "accuracy": 0.3499999940395355, "learning_rate": 2.2522522522522524e-07, "epoch": 0.01349527665317139, "percentage": 0.45, "elapsed_time": "0:00:23", "remaining_time": "1:25:32"} -{"current_steps": 10, "total_steps": 1110, "loss": 0.7035, "accuracy": 0.30000001192092896, "learning_rate": 4.504504504504505e-07, "epoch": 0.02699055330634278, "percentage": 0.9, "elapsed_time": "0:00:35", "remaining_time": "1:04:32"} -{"current_steps": 15, "total_steps": 1110, "loss": 0.6966, "accuracy": 0.44999998807907104, "learning_rate": 6.756756756756758e-07, "epoch": 0.04048582995951417, "percentage": 1.35, "elapsed_time": "0:00:47", "remaining_time": "0:57:37"} -{"current_steps": 20, "total_steps": 1110, "loss": 0.6843, "accuracy": 0.5249999761581421, "learning_rate": 9.00900900900901e-07, "epoch": 0.05398110661268556, "percentage": 1.8, "elapsed_time": "0:00:59", "remaining_time": "0:53:47"} -{"current_steps": 25, "total_steps": 1110, "loss": 0.6911, "accuracy": 0.625, "learning_rate": 1.1261261261261262e-06, "epoch": 0.06747638326585695, "percentage": 2.25, "elapsed_time": "0:01:10", "remaining_time": "0:51:10"} -{"current_steps": 30, "total_steps": 1110, "loss": 0.688, "accuracy": 0.4749999940395355, "learning_rate": 1.3513513513513515e-06, "epoch": 0.08097165991902834, "percentage": 2.7, "elapsed_time": "0:01:22", "remaining_time": "0:49:17"} -{"current_steps": 35, "total_steps": 1110, "loss": 0.6811, "accuracy": 0.6499999761581421, "learning_rate": 1.5765765765765766e-06, "epoch": 0.09446693657219973, "percentage": 3.15, "elapsed_time": "0:01:33", "remaining_time": "0:47:56"} -{"current_steps": 40, "total_steps": 1110, "loss": 0.6808, "accuracy": 0.6000000238418579, "learning_rate": 1.801801801801802e-06, "epoch": 0.10796221322537113, "percentage": 3.6, "elapsed_time": "0:01:44", "remaining_time": "0:46:32"} -{"current_steps": 45, "total_steps": 1110, "loss": 0.6846, "accuracy": 0.550000011920929, "learning_rate": 2.0270270270270273e-06, "epoch": 0.1214574898785425, "percentage": 4.05, "elapsed_time": "0:01:55", "remaining_time": "0:45:22"} -{"current_steps": 50, "total_steps": 1110, "loss": 0.6684, "accuracy": 0.75, "learning_rate": 2.2522522522522524e-06, "epoch": 0.1349527665317139, "percentage": 4.5, "elapsed_time": "0:02:06", "remaining_time": "0:44:46"} -{"current_steps": 55, "total_steps": 1110, "loss": 0.6639, "accuracy": 0.75, "learning_rate": 2.4774774774774775e-06, "epoch": 0.1484480431848853, "percentage": 4.95, "elapsed_time": "0:02:18", "remaining_time": "0:44:18"} -{"current_steps": 60, "total_steps": 1110, "loss": 0.6501, "accuracy": 0.75, "learning_rate": 2.702702702702703e-06, "epoch": 0.16194331983805668, "percentage": 5.41, "elapsed_time": "0:02:29", "remaining_time": "0:43:41"} -{"current_steps": 65, "total_steps": 1110, "loss": 0.6846, "accuracy": 0.6499999761581421, "learning_rate": 2.927927927927928e-06, "epoch": 0.17543859649122806, "percentage": 5.86, "elapsed_time": "0:02:41", "remaining_time": "0:43:15"} -{"current_steps": 70, "total_steps": 1110, "loss": 0.6538, "accuracy": 0.800000011920929, "learning_rate": 3.1531531531531532e-06, "epoch": 0.18893387314439947, "percentage": 6.31, "elapsed_time": "0:02:54", "remaining_time": "0:43:13"} -{"current_steps": 75, "total_steps": 1110, "loss": 0.6316, "accuracy": 0.75, "learning_rate": 3.3783783783783788e-06, "epoch": 0.20242914979757085, "percentage": 6.76, "elapsed_time": "0:03:06", "remaining_time": "0:42:54"} -{"current_steps": 80, "total_steps": 1110, "loss": 0.6296, "accuracy": 0.7250000238418579, "learning_rate": 3.603603603603604e-06, "epoch": 0.21592442645074225, "percentage": 7.21, "elapsed_time": "0:03:17", "remaining_time": "0:42:22"} -{"current_steps": 85, "total_steps": 1110, "loss": 0.6112, "accuracy": 0.7749999761581421, "learning_rate": 3.828828828828829e-06, "epoch": 0.22941970310391363, "percentage": 7.66, "elapsed_time": "0:03:29", "remaining_time": "0:42:05"} -{"current_steps": 90, "total_steps": 1110, "loss": 0.5947, "accuracy": 0.8500000238418579, "learning_rate": 4.0540540540540545e-06, "epoch": 0.242914979757085, "percentage": 8.11, "elapsed_time": "0:03:41", "remaining_time": "0:41:49"} -{"current_steps": 95, "total_steps": 1110, "loss": 0.6261, "accuracy": 0.675000011920929, "learning_rate": 4.27927927927928e-06, "epoch": 0.2564102564102564, "percentage": 8.56, "elapsed_time": "0:03:51", "remaining_time": "0:41:14"} -{"current_steps": 100, "total_steps": 1110, "loss": 0.5388, "accuracy": 0.8500000238418579, "learning_rate": 4.504504504504505e-06, "epoch": 0.2699055330634278, "percentage": 9.01, "elapsed_time": "0:04:04", "remaining_time": "0:41:14"} -{"current_steps": 105, "total_steps": 1110, "loss": 0.5332, "accuracy": 0.800000011920929, "learning_rate": 4.72972972972973e-06, "epoch": 0.2834008097165992, "percentage": 9.46, "elapsed_time": "0:04:52", "remaining_time": "0:46:41"} -{"current_steps": 110, "total_steps": 1110, "loss": 0.639, "accuracy": 0.699999988079071, "learning_rate": 4.954954954954955e-06, "epoch": 0.2968960863697706, "percentage": 9.91, "elapsed_time": "0:05:05", "remaining_time": "0:46:14"} -{"current_steps": 115, "total_steps": 1110, "loss": 0.4953, "accuracy": 0.800000011920929, "learning_rate": 4.999802215142814e-06, "epoch": 0.31039136302294196, "percentage": 10.36, "elapsed_time": "0:05:17", "remaining_time": "0:45:45"} -{"current_steps": 120, "total_steps": 1110, "loss": 0.5188, "accuracy": 0.75, "learning_rate": 4.998998767795805e-06, "epoch": 0.32388663967611336, "percentage": 10.81, "elapsed_time": "0:05:28", "remaining_time": "0:45:09"} -{"current_steps": 125, "total_steps": 1110, "loss": 0.5878, "accuracy": 0.7250000238418579, "learning_rate": 4.9975774948882615e-06, "epoch": 0.33738191632928477, "percentage": 11.26, "elapsed_time": "0:05:40", "remaining_time": "0:44:40"} -{"current_steps": 130, "total_steps": 1110, "loss": 0.555, "accuracy": 0.7250000238418579, "learning_rate": 4.995538747800403e-06, "epoch": 0.3508771929824561, "percentage": 11.71, "elapsed_time": "0:05:52", "remaining_time": "0:44:19"} -{"current_steps": 135, "total_steps": 1110, "loss": 0.4598, "accuracy": 0.75, "learning_rate": 4.9928830305701164e-06, "epoch": 0.3643724696356275, "percentage": 12.16, "elapsed_time": "0:06:04", "remaining_time": "0:43:52"} -{"current_steps": 140, "total_steps": 1110, "loss": 0.4536, "accuracy": 0.8500000238418579, "learning_rate": 4.98961099976835e-06, "epoch": 0.37786774628879893, "percentage": 12.61, "elapsed_time": "0:06:16", "remaining_time": "0:43:31"} -{"current_steps": 145, "total_steps": 1110, "loss": 0.4902, "accuracy": 0.824999988079071, "learning_rate": 4.985723464336783e-06, "epoch": 0.3913630229419703, "percentage": 13.06, "elapsed_time": "0:06:29", "remaining_time": "0:43:14"} -{"current_steps": 150, "total_steps": 1110, "loss": 0.4942, "accuracy": 0.7749999761581421, "learning_rate": 4.9812213853878376e-06, "epoch": 0.4048582995951417, "percentage": 13.51, "elapsed_time": "0:06:41", "remaining_time": "0:42:52"} -{"current_steps": 155, "total_steps": 1110, "loss": 0.5805, "accuracy": 0.7250000238418579, "learning_rate": 4.9761058759670625e-06, "epoch": 0.4183535762483131, "percentage": 13.96, "elapsed_time": "0:06:53", "remaining_time": "0:42:25"} -{"current_steps": 160, "total_steps": 1110, "loss": 0.3726, "accuracy": 0.824999988079071, "learning_rate": 4.970378200777949e-06, "epoch": 0.4318488529014845, "percentage": 14.41, "elapsed_time": "0:07:03", "remaining_time": "0:41:56"} -{"current_steps": 165, "total_steps": 1110, "loss": 0.4821, "accuracy": 0.800000011920929, "learning_rate": 4.964039775869271e-06, "epoch": 0.44534412955465585, "percentage": 14.86, "elapsed_time": "0:07:15", "remaining_time": "0:41:33"} -{"current_steps": 170, "total_steps": 1110, "loss": 0.4522, "accuracy": 0.7749999761581421, "learning_rate": 4.957092168284987e-06, "epoch": 0.45883940620782726, "percentage": 15.32, "elapsed_time": "0:07:27", "remaining_time": "0:41:15"} -{"current_steps": 175, "total_steps": 1110, "loss": 0.45, "accuracy": 0.7749999761581421, "learning_rate": 4.949537095676824e-06, "epoch": 0.47233468286099867, "percentage": 15.77, "elapsed_time": "0:07:39", "remaining_time": "0:40:55"} -{"current_steps": 180, "total_steps": 1110, "loss": 0.5881, "accuracy": 0.625, "learning_rate": 4.9413764258796236e-06, "epoch": 0.48582995951417, "percentage": 16.22, "elapsed_time": "0:07:51", "remaining_time": "0:40:36"} -{"current_steps": 185, "total_steps": 1110, "loss": 0.4912, "accuracy": 0.800000011920929, "learning_rate": 4.93261217644956e-06, "epoch": 0.4993252361673414, "percentage": 16.67, "elapsed_time": "0:08:03", "remaining_time": "0:40:19"} -{"current_steps": 190, "total_steps": 1110, "loss": 0.3841, "accuracy": 0.824999988079071, "learning_rate": 4.923246514165339e-06, "epoch": 0.5128205128205128, "percentage": 17.12, "elapsed_time": "0:08:15", "remaining_time": "0:40:00"} -{"current_steps": 195, "total_steps": 1110, "loss": 0.439, "accuracy": 0.800000011920929, "learning_rate": 4.913281754492509e-06, "epoch": 0.5263157894736842, "percentage": 17.57, "elapsed_time": "0:08:27", "remaining_time": "0:39:42"} -{"current_steps": 200, "total_steps": 1110, "loss": 0.436, "accuracy": 0.800000011920929, "learning_rate": 4.902720361011007e-06, "epoch": 0.5398110661268556, "percentage": 18.02, "elapsed_time": "0:08:39", "remaining_time": "0:39:21"} -{"current_steps": 205, "total_steps": 1110, "loss": 0.4408, "accuracy": 0.75, "learning_rate": 4.891564944806095e-06, "epoch": 0.553306342780027, "percentage": 18.47, "elapsed_time": "0:09:26", "remaining_time": "0:41:39"} -{"current_steps": 210, "total_steps": 1110, "loss": 0.4359, "accuracy": 0.800000011920929, "learning_rate": 4.879818263822816e-06, "epoch": 0.5668016194331984, "percentage": 18.92, "elapsed_time": "0:09:37", "remaining_time": "0:41:14"} -{"current_steps": 215, "total_steps": 1110, "loss": 0.4083, "accuracy": 0.8500000238418579, "learning_rate": 4.867483222184158e-06, "epoch": 0.5802968960863698, "percentage": 19.37, "elapsed_time": "0:09:48", "remaining_time": "0:40:48"} -{"current_steps": 220, "total_steps": 1110, "loss": 0.5288, "accuracy": 0.7250000238418579, "learning_rate": 4.854562869473063e-06, "epoch": 0.5937921727395412, "percentage": 19.82, "elapsed_time": "0:09:58", "remaining_time": "0:40:21"} -{"current_steps": 225, "total_steps": 1110, "loss": 0.467, "accuracy": 0.824999988079071, "learning_rate": 4.841060399978481e-06, "epoch": 0.6072874493927125, "percentage": 20.27, "elapsed_time": "0:10:09", "remaining_time": "0:39:57"} -{"current_steps": 230, "total_steps": 1110, "loss": 0.3819, "accuracy": 0.8500000238418579, "learning_rate": 4.826979151905655e-06, "epoch": 0.6207827260458839, "percentage": 20.72, "elapsed_time": "0:10:20", "remaining_time": "0:39:34"} -{"current_steps": 235, "total_steps": 1110, "loss": 0.403, "accuracy": 0.875, "learning_rate": 4.812322606550813e-06, "epoch": 0.6342780026990553, "percentage": 21.17, "elapsed_time": "0:10:31", "remaining_time": "0:39:11"} -{"current_steps": 240, "total_steps": 1110, "loss": 0.4905, "accuracy": 0.7749999761581421, "learning_rate": 4.7970943874404904e-06, "epoch": 0.6477732793522267, "percentage": 21.62, "elapsed_time": "0:10:43", "remaining_time": "0:38:54"} -{"current_steps": 245, "total_steps": 1110, "loss": 0.3498, "accuracy": 0.875, "learning_rate": 4.781298259435691e-06, "epoch": 0.6612685560053981, "percentage": 22.07, "elapsed_time": "0:10:56", "remaining_time": "0:38:38"} -{"current_steps": 250, "total_steps": 1110, "loss": 0.4596, "accuracy": 0.800000011920929, "learning_rate": 4.7649381278011e-06, "epoch": 0.6747638326585695, "percentage": 22.52, "elapsed_time": "0:11:08", "remaining_time": "0:38:18"} -{"current_steps": 255, "total_steps": 1110, "loss": 0.377, "accuracy": 0.824999988079071, "learning_rate": 4.748018037239592e-06, "epoch": 0.6882591093117408, "percentage": 22.97, "elapsed_time": "0:11:20", "remaining_time": "0:38:03"} -{"current_steps": 260, "total_steps": 1110, "loss": 0.5013, "accuracy": 0.8500000238418579, "learning_rate": 4.7305421708922596e-06, "epoch": 0.7017543859649122, "percentage": 23.42, "elapsed_time": "0:11:32", "remaining_time": "0:37:45"} -{"current_steps": 265, "total_steps": 1110, "loss": 0.3704, "accuracy": 0.8500000238418579, "learning_rate": 4.712514849304219e-06, "epoch": 0.7152496626180836, "percentage": 23.87, "elapsed_time": "0:11:45", "remaining_time": "0:37:28"} -{"current_steps": 270, "total_steps": 1110, "loss": 0.4081, "accuracy": 0.875, "learning_rate": 4.693940529356444e-06, "epoch": 0.728744939271255, "percentage": 24.32, "elapsed_time": "0:11:57", "remaining_time": "0:37:11"} -{"current_steps": 275, "total_steps": 1110, "loss": 0.2792, "accuracy": 0.8500000238418579, "learning_rate": 4.674823803163899e-06, "epoch": 0.7422402159244265, "percentage": 24.77, "elapsed_time": "0:12:09", "remaining_time": "0:36:54"} -{"current_steps": 280, "total_steps": 1110, "loss": 0.3756, "accuracy": 0.8500000238418579, "learning_rate": 4.655169396940229e-06, "epoch": 0.7557354925775979, "percentage": 25.23, "elapsed_time": "0:12:22", "remaining_time": "0:36:39"} -{"current_steps": 285, "total_steps": 1110, "loss": 0.3639, "accuracy": 0.8500000238418579, "learning_rate": 4.6349821698293025e-06, "epoch": 0.7692307692307693, "percentage": 25.68, "elapsed_time": "0:12:34", "remaining_time": "0:36:24"} -{"current_steps": 290, "total_steps": 1110, "loss": 0.3855, "accuracy": 0.824999988079071, "learning_rate": 4.6142671127038905e-06, "epoch": 0.7827260458839406, "percentage": 26.13, "elapsed_time": "0:12:46", "remaining_time": "0:36:06"} -{"current_steps": 295, "total_steps": 1110, "loss": 0.4094, "accuracy": 0.8999999761581421, "learning_rate": 4.593029346931777e-06, "epoch": 0.796221322537112, "percentage": 26.58, "elapsed_time": "0:12:58", "remaining_time": "0:35:50"} -{"current_steps": 300, "total_steps": 1110, "loss": 0.5103, "accuracy": 0.75, "learning_rate": 4.571274123109606e-06, "epoch": 0.8097165991902834, "percentage": 27.03, "elapsed_time": "0:13:10", "remaining_time": "0:35:34"} -{"current_steps": 305, "total_steps": 1110, "loss": 0.6645, "accuracy": 0.7250000238418579, "learning_rate": 4.549006819764779e-06, "epoch": 0.8232118758434548, "percentage": 27.48, "elapsed_time": "0:13:57", "remaining_time": "0:36:51"} -{"current_steps": 310, "total_steps": 1110, "loss": 0.3625, "accuracy": 0.8999999761581421, "learning_rate": 4.52623294202573e-06, "epoch": 0.8367071524966262, "percentage": 27.93, "elapsed_time": "0:14:09", "remaining_time": "0:36:31"} -{"current_steps": 315, "total_steps": 1110, "loss": 0.3943, "accuracy": 0.800000011920929, "learning_rate": 4.502958120260894e-06, "epoch": 0.8502024291497976, "percentage": 28.38, "elapsed_time": "0:14:20", "remaining_time": "0:36:11"} -{"current_steps": 320, "total_steps": 1110, "loss": 0.393, "accuracy": 0.8500000238418579, "learning_rate": 4.479188108686714e-06, "epoch": 0.863697705802969, "percentage": 28.83, "elapsed_time": "0:14:33", "remaining_time": "0:35:56"} -{"current_steps": 325, "total_steps": 1110, "loss": 0.3673, "accuracy": 0.8999999761581421, "learning_rate": 4.454928783945033e-06, "epoch": 0.8771929824561403, "percentage": 29.28, "elapsed_time": "0:14:45", "remaining_time": "0:35:37"} -{"current_steps": 330, "total_steps": 1110, "loss": 0.4332, "accuracy": 0.8500000238418579, "learning_rate": 4.430186143650216e-06, "epoch": 0.8906882591093117, "percentage": 29.73, "elapsed_time": "0:14:56", "remaining_time": "0:35:19"} -{"current_steps": 335, "total_steps": 1110, "loss": 0.2851, "accuracy": 0.875, "learning_rate": 4.404966304906363e-06, "epoch": 0.9041835357624831, "percentage": 30.18, "elapsed_time": "0:15:09", "remaining_time": "0:35:03"} -{"current_steps": 340, "total_steps": 1110, "loss": 0.3974, "accuracy": 0.925000011920929, "learning_rate": 4.379275502794984e-06, "epoch": 0.9176788124156545, "percentage": 30.63, "elapsed_time": "0:15:20", "remaining_time": "0:34:45"} -{"current_steps": 345, "total_steps": 1110, "loss": 0.3399, "accuracy": 0.875, "learning_rate": 4.3531200888335015e-06, "epoch": 0.9311740890688259, "percentage": 31.08, "elapsed_time": "0:15:32", "remaining_time": "0:34:26"} -{"current_steps": 350, "total_steps": 1110, "loss": 0.4954, "accuracy": 0.824999988079071, "learning_rate": 4.326506529404973e-06, "epoch": 0.9446693657219973, "percentage": 31.53, "elapsed_time": "0:15:44", "remaining_time": "0:34:10"} -{"current_steps": 355, "total_steps": 1110, "loss": 0.3882, "accuracy": 0.8500000238418579, "learning_rate": 4.299441404159409e-06, "epoch": 0.9581646423751687, "percentage": 31.98, "elapsed_time": "0:15:55", "remaining_time": "0:33:52"} -{"current_steps": 360, "total_steps": 1110, "loss": 0.3129, "accuracy": 0.8500000238418579, "learning_rate": 4.271931404387096e-06, "epoch": 0.97165991902834, "percentage": 32.43, "elapsed_time": "0:16:08", "remaining_time": "0:33:37"} -{"current_steps": 365, "total_steps": 1110, "loss": 0.4821, "accuracy": 0.7749999761581421, "learning_rate": 4.243983331364307e-06, "epoch": 0.9851551956815114, "percentage": 32.88, "elapsed_time": "0:16:20", "remaining_time": "0:33:20"} -{"current_steps": 370, "total_steps": 1110, "loss": 0.4743, "accuracy": 0.824999988079071, "learning_rate": 4.215604094671835e-06, "epoch": 0.9986504723346828, "percentage": 33.33, "elapsed_time": "0:16:33", "remaining_time": "0:33:06"} -{"current_steps": 375, "total_steps": 1110, "loss": 0.2691, "accuracy": 0.949999988079071, "learning_rate": 4.186800710486732e-06, "epoch": 1.0121457489878543, "percentage": 33.78, "elapsed_time": "0:16:45", "remaining_time": "0:32:49"} -{"current_steps": 380, "total_steps": 1110, "loss": 0.126, "accuracy": 1.0, "learning_rate": 4.157580299847717e-06, "epoch": 1.0256410256410255, "percentage": 34.23, "elapsed_time": "0:16:56", "remaining_time": "0:32:32"} -{"current_steps": 385, "total_steps": 1110, "loss": 0.2329, "accuracy": 0.925000011920929, "learning_rate": 4.12795008689464e-06, "epoch": 1.039136302294197, "percentage": 34.68, "elapsed_time": "0:17:09", "remaining_time": "0:32:18"} -{"current_steps": 390, "total_steps": 1110, "loss": 0.1885, "accuracy": 1.0, "learning_rate": 4.0979173970824626e-06, "epoch": 1.0526315789473684, "percentage": 35.14, "elapsed_time": "0:17:21", "remaining_time": "0:32:01"} -{"current_steps": 395, "total_steps": 1110, "loss": 0.1103, "accuracy": 1.0, "learning_rate": 4.067489655370197e-06, "epoch": 1.0661268556005399, "percentage": 35.59, "elapsed_time": "0:17:33", "remaining_time": "0:31:47"} -{"current_steps": 400, "total_steps": 1110, "loss": 0.1189, "accuracy": 1.0, "learning_rate": 4.0366743843852315e-06, "epoch": 1.0796221322537112, "percentage": 36.04, "elapsed_time": "0:17:44", "remaining_time": "0:31:29"} -{"current_steps": 405, "total_steps": 1110, "loss": 0.113, "accuracy": 0.9750000238418579, "learning_rate": 4.005479202563524e-06, "epoch": 1.0931174089068827, "percentage": 36.49, "elapsed_time": "0:18:30", "remaining_time": "0:32:12"} -{"current_steps": 410, "total_steps": 1110, "loss": 0.1506, "accuracy": 0.9750000238418579, "learning_rate": 3.973911822266099e-06, "epoch": 1.106612685560054, "percentage": 36.94, "elapsed_time": "0:18:42", "remaining_time": "0:31:56"} -{"current_steps": 415, "total_steps": 1110, "loss": 0.2229, "accuracy": 0.949999988079071, "learning_rate": 3.941980047872324e-06, "epoch": 1.1201079622132253, "percentage": 37.39, "elapsed_time": "0:18:53", "remaining_time": "0:31:39"} -{"current_steps": 420, "total_steps": 1110, "loss": 0.2023, "accuracy": 0.949999988079071, "learning_rate": 3.9096917738504445e-06, "epoch": 1.1336032388663968, "percentage": 37.84, "elapsed_time": "0:19:06", "remaining_time": "0:31:24"} -{"current_steps": 425, "total_steps": 1110, "loss": 0.2, "accuracy": 0.949999988079071, "learning_rate": 3.877054982805835e-06, "epoch": 1.147098515519568, "percentage": 38.29, "elapsed_time": "0:19:18", "remaining_time": "0:31:07"} -{"current_steps": 430, "total_steps": 1110, "loss": 0.1763, "accuracy": 0.925000011920929, "learning_rate": 3.844077743507468e-06, "epoch": 1.1605937921727396, "percentage": 38.74, "elapsed_time": "0:19:30", "remaining_time": "0:30:50"} -{"current_steps": 435, "total_steps": 1110, "loss": 0.2875, "accuracy": 0.8500000238418579, "learning_rate": 3.8107682088930797e-06, "epoch": 1.174089068825911, "percentage": 39.19, "elapsed_time": "0:19:42", "remaining_time": "0:30:34"} -{"current_steps": 440, "total_steps": 1110, "loss": 0.2094, "accuracy": 0.925000011920929, "learning_rate": 3.777134614053522e-06, "epoch": 1.1875843454790824, "percentage": 39.64, "elapsed_time": "0:19:52", "remaining_time": "0:30:15"} -{"current_steps": 445, "total_steps": 1110, "loss": 0.2674, "accuracy": 0.8999999761581421, "learning_rate": 3.7431852741968104e-06, "epoch": 1.2010796221322537, "percentage": 40.09, "elapsed_time": "0:20:04", "remaining_time": "0:30:00"} -{"current_steps": 450, "total_steps": 1110, "loss": 0.216, "accuracy": 0.949999988079071, "learning_rate": 3.7089285825923614e-06, "epoch": 1.214574898785425, "percentage": 40.54, "elapsed_time": "0:20:15", "remaining_time": "0:29:42"} -{"current_steps": 455, "total_steps": 1110, "loss": 0.1606, "accuracy": 0.9750000238418579, "learning_rate": 3.6743730084959275e-06, "epoch": 1.2280701754385965, "percentage": 40.99, "elapsed_time": "0:20:27", "remaining_time": "0:29:27"} -{"current_steps": 460, "total_steps": 1110, "loss": 0.1515, "accuracy": 0.9750000238418579, "learning_rate": 3.639527095055753e-06, "epoch": 1.2415654520917678, "percentage": 41.44, "elapsed_time": "0:20:40", "remaining_time": "0:29:12"} -{"current_steps": 465, "total_steps": 1110, "loss": 0.1586, "accuracy": 0.9750000238418579, "learning_rate": 3.604399457200458e-06, "epoch": 1.2550607287449393, "percentage": 41.89, "elapsed_time": "0:20:52", "remaining_time": "0:28:57"} -{"current_steps": 470, "total_steps": 1110, "loss": 0.1666, "accuracy": 0.949999988079071, "learning_rate": 3.5689987795091735e-06, "epoch": 1.2685560053981106, "percentage": 42.34, "elapsed_time": "0:21:04", "remaining_time": "0:28:41"} -{"current_steps": 475, "total_steps": 1110, "loss": 0.1562, "accuracy": 0.949999988079071, "learning_rate": 3.5333338140644602e-06, "epoch": 1.282051282051282, "percentage": 42.79, "elapsed_time": "0:21:16", "remaining_time": "0:28:26"} -{"current_steps": 480, "total_steps": 1110, "loss": 0.1537, "accuracy": 0.9750000238418579, "learning_rate": 3.497413378288541e-06, "epoch": 1.2955465587044535, "percentage": 43.24, "elapsed_time": "0:21:28", "remaining_time": "0:28:11"} -{"current_steps": 485, "total_steps": 1110, "loss": 0.1097, "accuracy": 1.0, "learning_rate": 3.4612463527633728e-06, "epoch": 1.3090418353576248, "percentage": 43.69, "elapsed_time": "0:21:39", "remaining_time": "0:27:55"} -{"current_steps": 490, "total_steps": 1110, "loss": 0.1741, "accuracy": 0.949999988079071, "learning_rate": 3.4248416790351086e-06, "epoch": 1.3225371120107963, "percentage": 44.14, "elapsed_time": "0:21:52", "remaining_time": "0:27:41"} -{"current_steps": 495, "total_steps": 1110, "loss": 0.1075, "accuracy": 1.0, "learning_rate": 3.3882083574034847e-06, "epoch": 1.3360323886639676, "percentage": 44.59, "elapsed_time": "0:22:05", "remaining_time": "0:27:27"} -{"current_steps": 500, "total_steps": 1110, "loss": 0.0835, "accuracy": 0.9750000238418579, "learning_rate": 3.3513554446966846e-06, "epoch": 1.349527665317139, "percentage": 45.05, "elapsed_time": "0:22:18", "remaining_time": "0:27:12"} -{"current_steps": 500, "total_steps": 1110, "eval_loss": 0.3281523883342743, "epoch": 1.349527665317139, "percentage": 45.05, "elapsed_time": "0:22:41", "remaining_time": "0:27:41"} -{"current_steps": 505, "total_steps": 1110, "loss": 0.2057, "accuracy": 0.949999988079071, "learning_rate": 3.314292052032227e-06, "epoch": 1.3630229419703104, "percentage": 45.5, "elapsed_time": "0:23:28", "remaining_time": "0:28:07"} -{"current_steps": 510, "total_steps": 1110, "loss": 0.1862, "accuracy": 0.925000011920929, "learning_rate": 3.2770273425644285e-06, "epoch": 1.376518218623482, "percentage": 45.95, "elapsed_time": "0:23:39", "remaining_time": "0:27:49"} -{"current_steps": 515, "total_steps": 1110, "loss": 0.1711, "accuracy": 0.9750000238418579, "learning_rate": 3.2395705292190067e-06, "epoch": 1.3900134952766532, "percentage": 46.4, "elapsed_time": "0:23:50", "remaining_time": "0:27:32"} -{"current_steps": 520, "total_steps": 1110, "loss": 0.114, "accuracy": 1.0, "learning_rate": 3.2019308724153743e-06, "epoch": 1.4035087719298245, "percentage": 46.85, "elapsed_time": "0:24:02", "remaining_time": "0:27:16"} -{"current_steps": 525, "total_steps": 1110, "loss": 0.1757, "accuracy": 0.949999988079071, "learning_rate": 3.164117677777191e-06, "epoch": 1.417004048582996, "percentage": 47.3, "elapsed_time": "0:24:12", "remaining_time": "0:26:58"} -{"current_steps": 530, "total_steps": 1110, "loss": 0.1532, "accuracy": 0.9750000238418579, "learning_rate": 3.1261402938317465e-06, "epoch": 1.4304993252361673, "percentage": 47.75, "elapsed_time": "0:24:25", "remaining_time": "0:26:43"} -{"current_steps": 535, "total_steps": 1110, "loss": 0.1892, "accuracy": 0.949999988079071, "learning_rate": 3.088008109698726e-06, "epoch": 1.4439946018893388, "percentage": 48.2, "elapsed_time": "0:24:37", "remaining_time": "0:26:27"} -{"current_steps": 540, "total_steps": 1110, "loss": 0.1852, "accuracy": 0.949999988079071, "learning_rate": 3.0497305527689446e-06, "epoch": 1.45748987854251, "percentage": 48.65, "elapsed_time": "0:24:49", "remaining_time": "0:26:11"} -{"current_steps": 545, "total_steps": 1110, "loss": 0.1847, "accuracy": 0.949999988079071, "learning_rate": 3.011317086373628e-06, "epoch": 1.4709851551956814, "percentage": 49.1, "elapsed_time": "0:25:01", "remaining_time": "0:25:56"} -{"current_steps": 550, "total_steps": 1110, "loss": 0.1473, "accuracy": 0.925000011920929, "learning_rate": 2.9727772074447916e-06, "epoch": 1.484480431848853, "percentage": 49.55, "elapsed_time": "0:25:13", "remaining_time": "0:25:40"} -{"current_steps": 555, "total_steps": 1110, "loss": 0.2029, "accuracy": 0.8999999761581421, "learning_rate": 2.9341204441673267e-06, "epoch": 1.4979757085020242, "percentage": 50.0, "elapsed_time": "0:25:24", "remaining_time": "0:25:24"} -{"current_steps": 560, "total_steps": 1110, "loss": 0.186, "accuracy": 0.9750000238418579, "learning_rate": 2.8953563536233525e-06, "epoch": 1.5114709851551957, "percentage": 50.45, "elapsed_time": "0:25:36", "remaining_time": "0:25:08"} -{"current_steps": 565, "total_steps": 1110, "loss": 0.168, "accuracy": 0.949999988079071, "learning_rate": 2.8564945194294273e-06, "epoch": 1.524966261808367, "percentage": 50.9, "elapsed_time": "0:25:48", "remaining_time": "0:24:53"} -{"current_steps": 570, "total_steps": 1110, "loss": 0.1935, "accuracy": 0.9750000238418579, "learning_rate": 2.817544549367197e-06, "epoch": 1.5384615384615383, "percentage": 51.35, "elapsed_time": "0:26:00", "remaining_time": "0:24:37"} -{"current_steps": 575, "total_steps": 1110, "loss": 0.2049, "accuracy": 0.949999988079071, "learning_rate": 2.778516073008071e-06, "epoch": 1.5519568151147098, "percentage": 51.8, "elapsed_time": "0:26:10", "remaining_time": "0:24:21"} -{"current_steps": 580, "total_steps": 1110, "loss": 0.2601, "accuracy": 0.8999999761581421, "learning_rate": 2.7394187393325107e-06, "epoch": 1.5654520917678814, "percentage": 52.25, "elapsed_time": "0:26:22", "remaining_time": "0:24:06"} -{"current_steps": 585, "total_steps": 1110, "loss": 0.1305, "accuracy": 0.949999988079071, "learning_rate": 2.7002622143445177e-06, "epoch": 1.5789473684210527, "percentage": 52.7, "elapsed_time": "0:26:34", "remaining_time": "0:23:50"} -{"current_steps": 590, "total_steps": 1110, "loss": 0.1715, "accuracy": 0.925000011920929, "learning_rate": 2.6610561786819207e-06, "epoch": 1.592442645074224, "percentage": 53.15, "elapsed_time": "0:26:44", "remaining_time": "0:23:34"} -{"current_steps": 595, "total_steps": 1110, "loss": 0.1382, "accuracy": 1.0, "learning_rate": 2.6218103252230302e-06, "epoch": 1.6059379217273952, "percentage": 53.6, "elapsed_time": "0:26:56", "remaining_time": "0:23:19"} -{"current_steps": 600, "total_steps": 1110, "loss": 0.111, "accuracy": 1.0, "learning_rate": 2.582534356690284e-06, "epoch": 1.6194331983805668, "percentage": 54.05, "elapsed_time": "0:27:09", "remaining_time": "0:23:04"} -{"current_steps": 605, "total_steps": 1110, "loss": 0.2301, "accuracy": 0.8999999761581421, "learning_rate": 2.5432379832514437e-06, "epoch": 1.6329284750337383, "percentage": 54.5, "elapsed_time": "0:27:55", "remaining_time": "0:23:18"} -{"current_steps": 610, "total_steps": 1110, "loss": 0.1597, "accuracy": 0.949999988079071, "learning_rate": 2.5039309201189618e-06, "epoch": 1.6464237516869096, "percentage": 54.95, "elapsed_time": "0:28:07", "remaining_time": "0:23:03"} -{"current_steps": 615, "total_steps": 1110, "loss": 0.2172, "accuracy": 0.9750000238418579, "learning_rate": 2.4646228851480957e-06, "epoch": 1.6599190283400809, "percentage": 55.41, "elapsed_time": "0:28:19", "remaining_time": "0:22:47"} -{"current_steps": 620, "total_steps": 1110, "loss": 0.1116, "accuracy": 0.9750000238418579, "learning_rate": 2.4253235964343677e-06, "epoch": 1.6734143049932524, "percentage": 55.86, "elapsed_time": "0:28:32", "remaining_time": "0:22:33"} -{"current_steps": 625, "total_steps": 1110, "loss": 0.2869, "accuracy": 0.875, "learning_rate": 2.3860427699109726e-06, "epoch": 1.686909581646424, "percentage": 56.31, "elapsed_time": "0:28:44", "remaining_time": "0:22:17"} -{"current_steps": 630, "total_steps": 1110, "loss": 0.1194, "accuracy": 1.0, "learning_rate": 2.34679011694671e-06, "epoch": 1.7004048582995952, "percentage": 56.76, "elapsed_time": "0:28:55", "remaining_time": "0:22:02"} -{"current_steps": 635, "total_steps": 1110, "loss": 0.2026, "accuracy": 0.949999988079071, "learning_rate": 2.3075753419450524e-06, "epoch": 1.7139001349527665, "percentage": 57.21, "elapsed_time": "0:29:08", "remaining_time": "0:21:47"} -{"current_steps": 640, "total_steps": 1110, "loss": 0.269, "accuracy": 0.925000011920929, "learning_rate": 2.2684081399449327e-06, "epoch": 1.7273954116059378, "percentage": 57.66, "elapsed_time": "0:29:20", "remaining_time": "0:21:32"} -{"current_steps": 645, "total_steps": 1110, "loss": 0.3528, "accuracy": 0.875, "learning_rate": 2.2292981942238454e-06, "epoch": 1.7408906882591093, "percentage": 58.11, "elapsed_time": "0:29:31", "remaining_time": "0:21:17"} -{"current_steps": 650, "total_steps": 1110, "loss": 0.2386, "accuracy": 0.949999988079071, "learning_rate": 2.1902551739038624e-06, "epoch": 1.7543859649122808, "percentage": 58.56, "elapsed_time": "0:29:42", "remaining_time": "0:21:01"} -{"current_steps": 655, "total_steps": 1110, "loss": 0.1651, "accuracy": 0.925000011920929, "learning_rate": 2.151288731561136e-06, "epoch": 1.7678812415654521, "percentage": 59.01, "elapsed_time": "0:29:54", "remaining_time": "0:20:46"} -{"current_steps": 660, "total_steps": 1110, "loss": 0.1999, "accuracy": 0.949999988079071, "learning_rate": 2.1124085008395056e-06, "epoch": 1.7813765182186234, "percentage": 59.46, "elapsed_time": "0:30:06", "remaining_time": "0:20:31"} -{"current_steps": 665, "total_steps": 1110, "loss": 0.2781, "accuracy": 0.8999999761581421, "learning_rate": 2.073624094068776e-06, "epoch": 1.7948717948717947, "percentage": 59.91, "elapsed_time": "0:30:18", "remaining_time": "0:20:16"} -{"current_steps": 670, "total_steps": 1110, "loss": 0.1212, "accuracy": 1.0, "learning_rate": 2.03494509988827e-06, "epoch": 1.8083670715249662, "percentage": 60.36, "elapsed_time": "0:30:30", "remaining_time": "0:20:02"} -{"current_steps": 675, "total_steps": 1110, "loss": 0.1177, "accuracy": 0.9750000238418579, "learning_rate": 1.996381080876237e-06, "epoch": 1.8218623481781377, "percentage": 60.81, "elapsed_time": "0:30:43", "remaining_time": "0:19:47"} -{"current_steps": 680, "total_steps": 1110, "loss": 0.2672, "accuracy": 0.949999988079071, "learning_rate": 1.957941571185702e-06, "epoch": 1.835357624831309, "percentage": 61.26, "elapsed_time": "0:30:55", "remaining_time": "0:19:33"} -{"current_steps": 685, "total_steps": 1110, "loss": 0.1468, "accuracy": 0.9750000238418579, "learning_rate": 1.919636074187346e-06, "epoch": 1.8488529014844803, "percentage": 61.71, "elapsed_time": "0:31:07", "remaining_time": "0:19:18"} -{"current_steps": 690, "total_steps": 1110, "loss": 0.2666, "accuracy": 0.925000011920929, "learning_rate": 1.8814740601199943e-06, "epoch": 1.8623481781376519, "percentage": 62.16, "elapsed_time": "0:31:18", "remaining_time": "0:19:03"} -{"current_steps": 695, "total_steps": 1110, "loss": 0.1718, "accuracy": 1.0, "learning_rate": 1.8434649637492952e-06, "epoch": 1.8758434547908234, "percentage": 62.61, "elapsed_time": "0:31:30", "remaining_time": "0:18:48"} -{"current_steps": 700, "total_steps": 1110, "loss": 0.1734, "accuracy": 0.925000011920929, "learning_rate": 1.8056181820351737e-06, "epoch": 1.8893387314439947, "percentage": 63.06, "elapsed_time": "0:31:42", "remaining_time": "0:18:34"} -{"current_steps": 705, "total_steps": 1110, "loss": 0.0641, "accuracy": 1.0, "learning_rate": 1.7679430718086244e-06, "epoch": 1.902834008097166, "percentage": 63.51, "elapsed_time": "0:32:29", "remaining_time": "0:18:40"} -{"current_steps": 710, "total_steps": 1110, "loss": 0.123, "accuracy": 0.949999988079071, "learning_rate": 1.7304489474584307e-06, "epoch": 1.9163292847503373, "percentage": 63.96, "elapsed_time": "0:32:41", "remaining_time": "0:18:25"} -{"current_steps": 715, "total_steps": 1110, "loss": 0.1255, "accuracy": 0.9750000238418579, "learning_rate": 1.693145078628377e-06, "epoch": 1.9298245614035088, "percentage": 64.41, "elapsed_time": "0:32:53", "remaining_time": "0:18:10"} -{"current_steps": 720, "total_steps": 1110, "loss": 0.1608, "accuracy": 0.949999988079071, "learning_rate": 1.6560406879255192e-06, "epoch": 1.9433198380566803, "percentage": 64.86, "elapsed_time": "0:33:05", "remaining_time": "0:17:55"} -{"current_steps": 725, "total_steps": 1110, "loss": 0.1858, "accuracy": 0.925000011920929, "learning_rate": 1.6191449486400893e-06, "epoch": 1.9568151147098516, "percentage": 65.32, "elapsed_time": "0:33:16", "remaining_time": "0:17:40"} -{"current_steps": 730, "total_steps": 1110, "loss": 0.1935, "accuracy": 0.949999988079071, "learning_rate": 1.5824669824775868e-06, "epoch": 1.9703103913630229, "percentage": 65.77, "elapsed_time": "0:33:29", "remaining_time": "0:17:26"} -{"current_steps": 735, "total_steps": 1110, "loss": 0.1763, "accuracy": 0.949999988079071, "learning_rate": 1.5460158573036288e-06, "epoch": 1.9838056680161942, "percentage": 66.22, "elapsed_time": "0:33:42", "remaining_time": "0:17:11"} -{"current_steps": 740, "total_steps": 1110, "loss": 0.2088, "accuracy": 0.925000011920929, "learning_rate": 1.509800584902108e-06, "epoch": 1.9973009446693657, "percentage": 66.67, "elapsed_time": "0:33:53", "remaining_time": "0:16:56"} -{"current_steps": 745, "total_steps": 1110, "loss": 0.1035, "accuracy": 1.0, "learning_rate": 1.473830118747216e-06, "epoch": 2.010796221322537, "percentage": 67.12, "elapsed_time": "0:34:03", "remaining_time": "0:16:41"} -{"current_steps": 750, "total_steps": 1110, "loss": 0.068, "accuracy": 1.0, "learning_rate": 1.4381133517898803e-06, "epoch": 2.0242914979757085, "percentage": 67.57, "elapsed_time": "0:34:17", "remaining_time": "0:16:27"} -{"current_steps": 755, "total_steps": 1110, "loss": 0.1633, "accuracy": 0.949999988079071, "learning_rate": 1.4026591142591733e-06, "epoch": 2.03778677462888, "percentage": 68.02, "elapsed_time": "0:34:29", "remaining_time": "0:16:12"} -{"current_steps": 760, "total_steps": 1110, "loss": 0.0739, "accuracy": 0.9750000238418579, "learning_rate": 1.3674761714792153e-06, "epoch": 2.051282051282051, "percentage": 68.47, "elapsed_time": "0:34:40", "remaining_time": "0:15:58"} -{"current_steps": 765, "total_steps": 1110, "loss": 0.1002, "accuracy": 0.9750000238418579, "learning_rate": 1.33257322170213e-06, "epoch": 2.064777327935223, "percentage": 68.92, "elapsed_time": "0:34:52", "remaining_time": "0:15:43"} -{"current_steps": 770, "total_steps": 1110, "loss": 0.1696, "accuracy": 0.925000011920929, "learning_rate": 1.2979588939575879e-06, "epoch": 2.078272604588394, "percentage": 69.37, "elapsed_time": "0:35:03", "remaining_time": "0:15:28"} -{"current_steps": 775, "total_steps": 1110, "loss": 0.0593, "accuracy": 1.0, "learning_rate": 1.2636417459194536e-06, "epoch": 2.0917678812415654, "percentage": 69.82, "elapsed_time": "0:35:15", "remaining_time": "0:15:14"} -{"current_steps": 780, "total_steps": 1110, "loss": 0.0845, "accuracy": 0.9750000238418579, "learning_rate": 1.2296302617900772e-06, "epoch": 2.1052631578947367, "percentage": 70.27, "elapsed_time": "0:35:27", "remaining_time": "0:14:59"} -{"current_steps": 785, "total_steps": 1110, "loss": 0.1138, "accuracy": 1.0, "learning_rate": 1.1959328502027556e-06, "epoch": 2.118758434547908, "percentage": 70.72, "elapsed_time": "0:35:38", "remaining_time": "0:14:45"} -{"current_steps": 790, "total_steps": 1110, "loss": 0.1239, "accuracy": 0.9750000238418579, "learning_rate": 1.1625578421428714e-06, "epoch": 2.1322537112010798, "percentage": 71.17, "elapsed_time": "0:35:50", "remaining_time": "0:14:31"} -{"current_steps": 795, "total_steps": 1110, "loss": 0.0922, "accuracy": 0.9750000238418579, "learning_rate": 1.1295134888882258e-06, "epoch": 2.145748987854251, "percentage": 71.62, "elapsed_time": "0:36:02", "remaining_time": "0:14:16"} -{"current_steps": 800, "total_steps": 1110, "loss": 0.112, "accuracy": 0.949999988079071, "learning_rate": 1.0968079599690872e-06, "epoch": 2.1592442645074224, "percentage": 72.07, "elapsed_time": "0:36:13", "remaining_time": "0:14:02"} -{"current_steps": 805, "total_steps": 1110, "loss": 0.1216, "accuracy": 0.949999988079071, "learning_rate": 1.064449341148442e-06, "epoch": 2.1727395411605936, "percentage": 72.52, "elapsed_time": "0:37:00", "remaining_time": "0:14:01"} -{"current_steps": 810, "total_steps": 1110, "loss": 0.0775, "accuracy": 1.0, "learning_rate": 1.0324456324229536e-06, "epoch": 2.1862348178137654, "percentage": 72.97, "elapsed_time": "0:37:12", "remaining_time": "0:13:46"} -{"current_steps": 815, "total_steps": 1110, "loss": 0.1111, "accuracy": 0.9750000238418579, "learning_rate": 1.000804746045138e-06, "epoch": 2.1997300944669367, "percentage": 73.42, "elapsed_time": "0:37:24", "remaining_time": "0:13:32"} -{"current_steps": 820, "total_steps": 1110, "loss": 0.118, "accuracy": 0.9750000238418579, "learning_rate": 9.695345045672167e-07, "epoch": 2.213225371120108, "percentage": 73.87, "elapsed_time": "0:37:36", "remaining_time": "0:13:18"} -{"current_steps": 825, "total_steps": 1110, "loss": 0.0961, "accuracy": 0.9750000238418579, "learning_rate": 9.386426389071532e-07, "epoch": 2.2267206477732793, "percentage": 74.32, "elapsed_time": "0:37:47", "remaining_time": "0:13:03"} -{"current_steps": 830, "total_steps": 1110, "loss": 0.0944, "accuracy": 1.0, "learning_rate": 9.081367864373489e-07, "epoch": 2.2402159244264506, "percentage": 74.77, "elapsed_time": "0:37:58", "remaining_time": "0:12:48"} -{"current_steps": 835, "total_steps": 1110, "loss": 0.0698, "accuracy": 1.0, "learning_rate": 8.780244890964567e-07, "epoch": 2.2537112010796223, "percentage": 75.23, "elapsed_time": "0:38:10", "remaining_time": "0:12:34"} -{"current_steps": 840, "total_steps": 1110, "loss": 0.0949, "accuracy": 0.949999988079071, "learning_rate": 8.483131915247969e-07, "epoch": 2.2672064777327936, "percentage": 75.68, "elapsed_time": "0:38:22", "remaining_time": "0:12:20"} -{"current_steps": 845, "total_steps": 1110, "loss": 0.0783, "accuracy": 1.0, "learning_rate": 8.190102392238191e-07, "epoch": 2.280701754385965, "percentage": 76.13, "elapsed_time": "0:38:33", "remaining_time": "0:12:05"} -{"current_steps": 850, "total_steps": 1110, "loss": 0.0577, "accuracy": 1.0, "learning_rate": 7.90122876740086e-07, "epoch": 2.294197031039136, "percentage": 76.58, "elapsed_time": "0:38:46", "remaining_time": "0:11:51"} -{"current_steps": 855, "total_steps": 1110, "loss": 0.0519, "accuracy": 1.0, "learning_rate": 7.616582458742059e-07, "epoch": 2.3076923076923075, "percentage": 77.03, "elapsed_time": "0:38:57", "remaining_time": "0:11:37"} -{"current_steps": 860, "total_steps": 1110, "loss": 0.1057, "accuracy": 0.949999988079071, "learning_rate": 7.336233839151693e-07, "epoch": 2.3211875843454792, "percentage": 77.48, "elapsed_time": "0:39:10", "remaining_time": "0:11:23"} -{"current_steps": 865, "total_steps": 1110, "loss": 0.0774, "accuracy": 1.0, "learning_rate": 7.060252219005304e-07, "epoch": 2.3346828609986505, "percentage": 77.93, "elapsed_time": "0:39:22", "remaining_time": "0:11:09"} -{"current_steps": 870, "total_steps": 1110, "loss": 0.1022, "accuracy": 1.0, "learning_rate": 6.788705829028483e-07, "epoch": 2.348178137651822, "percentage": 78.38, "elapsed_time": "0:39:34", "remaining_time": "0:10:55"} -{"current_steps": 875, "total_steps": 1110, "loss": 0.0955, "accuracy": 1.0, "learning_rate": 6.521661803428225e-07, "epoch": 2.361673414304993, "percentage": 78.83, "elapsed_time": "0:39:47", "remaining_time": "0:10:41"} -{"current_steps": 880, "total_steps": 1110, "loss": 0.0983, "accuracy": 1.0, "learning_rate": 6.259186163295439e-07, "epoch": 2.375168690958165, "percentage": 79.28, "elapsed_time": "0:39:58", "remaining_time": "0:10:26"} -{"current_steps": 885, "total_steps": 1110, "loss": 0.0783, "accuracy": 0.9750000238418579, "learning_rate": 6.001343800282569e-07, "epoch": 2.388663967611336, "percentage": 79.73, "elapsed_time": "0:40:09", "remaining_time": "0:10:12"} -{"current_steps": 890, "total_steps": 1110, "loss": 0.0806, "accuracy": 1.0, "learning_rate": 5.748198460560475e-07, "epoch": 2.4021592442645074, "percentage": 80.18, "elapsed_time": "0:40:22", "remaining_time": "0:09:58"} -{"current_steps": 895, "total_steps": 1110, "loss": 0.1433, "accuracy": 0.949999988079071, "learning_rate": 5.499812729058546e-07, "epoch": 2.4156545209176787, "percentage": 80.63, "elapsed_time": "0:40:34", "remaining_time": "0:09:44"} -{"current_steps": 900, "total_steps": 1110, "loss": 0.0715, "accuracy": 1.0, "learning_rate": 5.256248013991857e-07, "epoch": 2.42914979757085, "percentage": 81.08, "elapsed_time": "0:40:46", "remaining_time": "0:09:30"} -{"current_steps": 905, "total_steps": 1110, "loss": 0.0683, "accuracy": 0.9750000238418579, "learning_rate": 5.01756453167925e-07, "epoch": 2.4426450742240218, "percentage": 81.53, "elapsed_time": "0:41:32", "remaining_time": "0:09:24"} -{"current_steps": 910, "total_steps": 1110, "loss": 0.1049, "accuracy": 1.0, "learning_rate": 4.78382129165613e-07, "epoch": 2.456140350877193, "percentage": 81.98, "elapsed_time": "0:41:45", "remaining_time": "0:09:10"} -{"current_steps": 915, "total_steps": 1110, "loss": 0.118, "accuracy": 0.9750000238418579, "learning_rate": 4.5550760820855633e-07, "epoch": 2.4696356275303644, "percentage": 82.43, "elapsed_time": "0:41:56", "remaining_time": "0:08:56"} -{"current_steps": 920, "total_steps": 1110, "loss": 0.0716, "accuracy": 1.0, "learning_rate": 4.3313854554713457e-07, "epoch": 2.4831309041835357, "percentage": 82.88, "elapsed_time": "0:42:08", "remaining_time": "0:08:42"} -{"current_steps": 925, "total_steps": 1110, "loss": 0.1007, "accuracy": 1.0, "learning_rate": 4.1128047146765936e-07, "epoch": 2.4966261808367074, "percentage": 83.33, "elapsed_time": "0:42:19", "remaining_time": "0:08:27"} -{"current_steps": 930, "total_steps": 1110, "loss": 0.0808, "accuracy": 1.0, "learning_rate": 3.899387899251242e-07, "epoch": 2.5101214574898787, "percentage": 83.78, "elapsed_time": "0:42:31", "remaining_time": "0:08:13"} -{"current_steps": 935, "total_steps": 1110, "loss": 0.1245, "accuracy": 1.0, "learning_rate": 3.6911877720719053e-07, "epoch": 2.52361673414305, "percentage": 84.23, "elapsed_time": "0:42:42", "remaining_time": "0:07:59"} -{"current_steps": 940, "total_steps": 1110, "loss": 0.1901, "accuracy": 0.949999988079071, "learning_rate": 3.488255806297311e-07, "epoch": 2.5371120107962213, "percentage": 84.68, "elapsed_time": "0:42:54", "remaining_time": "0:07:45"} -{"current_steps": 945, "total_steps": 1110, "loss": 0.0904, "accuracy": 1.0, "learning_rate": 3.2906421726426857e-07, "epoch": 2.5506072874493926, "percentage": 85.14, "elapsed_time": "0:43:05", "remaining_time": "0:07:31"} -{"current_steps": 950, "total_steps": 1110, "loss": 0.0844, "accuracy": 1.0, "learning_rate": 3.09839572697605e-07, "epoch": 2.564102564102564, "percentage": 85.59, "elapsed_time": "0:43:16", "remaining_time": "0:07:17"} -{"current_steps": 955, "total_steps": 1110, "loss": 0.1289, "accuracy": 0.949999988079071, "learning_rate": 2.9115639982396166e-07, "epoch": 2.5775978407557356, "percentage": 86.04, "elapsed_time": "0:43:29", "remaining_time": "0:07:03"} -{"current_steps": 960, "total_steps": 1110, "loss": 0.0916, "accuracy": 1.0, "learning_rate": 2.7301931766992916e-07, "epoch": 2.591093117408907, "percentage": 86.49, "elapsed_time": "0:43:41", "remaining_time": "0:06:49"} -{"current_steps": 965, "total_steps": 1110, "loss": 0.0516, "accuracy": 1.0, "learning_rate": 2.554328102525022e-07, "epoch": 2.604588394062078, "percentage": 86.94, "elapsed_time": "0:43:54", "remaining_time": "0:06:35"} -{"current_steps": 970, "total_steps": 1110, "loss": 0.128, "accuracy": 0.949999988079071, "learning_rate": 2.3840122547050482e-07, "epoch": 2.6180836707152495, "percentage": 87.39, "elapsed_time": "0:44:05", "remaining_time": "0:06:21"} -{"current_steps": 975, "total_steps": 1110, "loss": 0.0971, "accuracy": 0.9750000238418579, "learning_rate": 2.219287740296605e-07, "epoch": 2.6315789473684212, "percentage": 87.84, "elapsed_time": "0:44:16", "remaining_time": "0:06:07"} -{"current_steps": 980, "total_steps": 1110, "loss": 0.1152, "accuracy": 1.0, "learning_rate": 2.060195284015837e-07, "epoch": 2.6450742240215925, "percentage": 88.29, "elapsed_time": "0:44:27", "remaining_time": "0:05:53"} -{"current_steps": 985, "total_steps": 1110, "loss": 0.096, "accuracy": 1.0, "learning_rate": 1.9067742181694353e-07, "epoch": 2.658569500674764, "percentage": 88.74, "elapsed_time": "0:44:38", "remaining_time": "0:05:39"} -{"current_steps": 990, "total_steps": 1110, "loss": 0.118, "accuracy": 0.949999988079071, "learning_rate": 1.75906247293057e-07, "epoch": 2.672064777327935, "percentage": 89.19, "elapsed_time": "0:44:50", "remaining_time": "0:05:26"} -{"current_steps": 995, "total_steps": 1110, "loss": 0.152, "accuracy": 0.9750000238418579, "learning_rate": 1.617096566961429e-07, "epoch": 2.6855600539811064, "percentage": 89.64, "elapsed_time": "0:45:02", "remaining_time": "0:05:12"} -{"current_steps": 1000, "total_steps": 1110, "loss": 0.1151, "accuracy": 0.949999988079071, "learning_rate": 1.4809115983847267e-07, "epoch": 2.699055330634278, "percentage": 90.09, "elapsed_time": "0:45:13", "remaining_time": "0:04:58"} -{"current_steps": 1000, "total_steps": 1110, "eval_loss": 0.31860384345054626, "epoch": 2.699055330634278, "percentage": 90.09, "elapsed_time": "0:45:37", "remaining_time": "0:05:01"} -{"current_steps": 1005, "total_steps": 1110, "loss": 0.0649, "accuracy": 1.0, "learning_rate": 1.3505412361064395e-07, "epoch": 2.7125506072874495, "percentage": 90.54, "elapsed_time": "0:46:23", "remaining_time": "0:04:50"} -{"current_steps": 1010, "total_steps": 1110, "loss": 0.0805, "accuracy": 1.0, "learning_rate": 1.226017711491867e-07, "epoch": 2.7260458839406208, "percentage": 90.99, "elapsed_time": "0:46:34", "remaining_time": "0:04:36"} -{"current_steps": 1015, "total_steps": 1110, "loss": 0.0625, "accuracy": 1.0, "learning_rate": 1.107371810397076e-07, "epoch": 2.739541160593792, "percentage": 91.44, "elapsed_time": "0:46:47", "remaining_time": "0:04:22"} -{"current_steps": 1020, "total_steps": 1110, "loss": 0.0725, "accuracy": 1.0, "learning_rate": 9.946328655577625e-08, "epoch": 2.753036437246964, "percentage": 91.89, "elapsed_time": "0:46:59", "remaining_time": "0:04:08"} -{"current_steps": 1025, "total_steps": 1110, "loss": 0.1188, "accuracy": 0.949999988079071, "learning_rate": 8.878287493373245e-08, "epoch": 2.766531713900135, "percentage": 92.34, "elapsed_time": "0:47:11", "remaining_time": "0:03:54"} -{"current_steps": 1030, "total_steps": 1110, "loss": 0.1028, "accuracy": 1.0, "learning_rate": 7.869858668360042e-08, "epoch": 2.7800269905533064, "percentage": 92.79, "elapsed_time": "0:47:22", "remaining_time": "0:03:40"} -{"current_steps": 1035, "total_steps": 1110, "loss": 0.0856, "accuracy": 0.9750000238418579, "learning_rate": 6.921291493627747e-08, "epoch": 2.7935222672064777, "percentage": 93.24, "elapsed_time": "0:47:35", "remaining_time": "0:03:26"} -{"current_steps": 1040, "total_steps": 1110, "loss": 0.1754, "accuracy": 0.8999999761581421, "learning_rate": 6.032820482716001e-08, "epoch": 2.807017543859649, "percentage": 93.69, "elapsed_time": "0:47:47", "remaining_time": "0:03:13"} -{"current_steps": 1045, "total_steps": 1110, "loss": 0.1038, "accuracy": 0.9750000238418579, "learning_rate": 5.204665291635519e-08, "epoch": 2.8205128205128203, "percentage": 94.14, "elapsed_time": "0:47:59", "remaining_time": "0:02:59"} -{"current_steps": 1050, "total_steps": 1110, "loss": 0.1639, "accuracy": 0.949999988079071, "learning_rate": 4.437030664562969e-08, "epoch": 2.834008097165992, "percentage": 94.59, "elapsed_time": "0:48:12", "remaining_time": "0:02:45"} -{"current_steps": 1055, "total_steps": 1110, "loss": 0.0909, "accuracy": 0.9750000238418579, "learning_rate": 3.730106383222132e-08, "epoch": 2.8475033738191633, "percentage": 95.05, "elapsed_time": "0:48:23", "remaining_time": "0:02:31"} -{"current_steps": 1060, "total_steps": 1110, "loss": 0.2529, "accuracy": 0.8999999761581421, "learning_rate": 3.084067219964182e-08, "epoch": 2.8609986504723346, "percentage": 95.5, "elapsed_time": "0:48:34", "remaining_time": "0:02:17"} -{"current_steps": 1065, "total_steps": 1110, "loss": 0.1089, "accuracy": 0.9750000238418579, "learning_rate": 2.499072894559057e-08, "epoch": 2.8744939271255063, "percentage": 95.95, "elapsed_time": "0:48:46", "remaining_time": "0:02:03"} -{"current_steps": 1070, "total_steps": 1110, "loss": 0.0822, "accuracy": 1.0, "learning_rate": 1.975268034707878e-08, "epoch": 2.8879892037786776, "percentage": 96.4, "elapsed_time": "0:48:59", "remaining_time": "0:01:49"} -{"current_steps": 1075, "total_steps": 1110, "loss": 0.0959, "accuracy": 1.0, "learning_rate": 1.512782140286939e-08, "epoch": 2.901484480431849, "percentage": 96.85, "elapsed_time": "0:49:11", "remaining_time": "0:01:36"} -{"current_steps": 1080, "total_steps": 1110, "loss": 0.0872, "accuracy": 0.9750000238418579, "learning_rate": 1.1117295513313475e-08, "epoch": 2.91497975708502, "percentage": 97.3, "elapsed_time": "0:49:24", "remaining_time": "0:01:22"} -{"current_steps": 1085, "total_steps": 1110, "loss": 0.1053, "accuracy": 0.949999988079071, "learning_rate": 7.72209419766995e-09, "epoch": 2.9284750337381915, "percentage": 97.75, "elapsed_time": "0:49:34", "remaining_time": "0:01:08"} -{"current_steps": 1090, "total_steps": 1110, "loss": 0.0878, "accuracy": 1.0, "learning_rate": 4.943056848972227e-09, "epoch": 2.941970310391363, "percentage": 98.2, "elapsed_time": "0:49:46", "remaining_time": "0:00:54"} -{"current_steps": 1095, "total_steps": 1110, "loss": 0.1109, "accuracy": 0.9750000238418579, "learning_rate": 2.7808705265053305e-09, "epoch": 2.9554655870445345, "percentage": 98.65, "elapsed_time": "0:49:57", "remaining_time": "0:00:41"} -{"current_steps": 1100, "total_steps": 1110, "loss": 0.118, "accuracy": 0.9750000238418579, "learning_rate": 1.2360697859462035e-09, "epoch": 2.968960863697706, "percentage": 99.1, "elapsed_time": "0:50:09", "remaining_time": "0:00:27"} -{"current_steps": 1105, "total_steps": 1110, "loss": 0.1793, "accuracy": 0.9750000238418579, "learning_rate": 3.090365472041557e-10, "epoch": 2.982456140350877, "percentage": 99.55, "elapsed_time": "0:50:54", "remaining_time": "0:00:13"} -{"current_steps": 1110, "total_steps": 1110, "loss": 0.0661, "accuracy": 1.0, "learning_rate": 0.0, "epoch": 2.9959514170040484, "percentage": 100.0, "elapsed_time": "0:51:06", "remaining_time": "0:00:00"} -{"current_steps": 1110, "total_steps": 1110, "epoch": 2.9959514170040484, "percentage": 100.0, "elapsed_time": "0:51:41", "remaining_time": "0:00:00"} +{"current_steps": 5, "total_steps": 6252, "loss": 1.3138, "learning_rate": 2.6652452025586355e-08, "epoch": 0.002399088346428357, "percentage": 0.08, "elapsed_time": "0:00:30", "remaining_time": "10:39:03"} +{"current_steps": 10, "total_steps": 6252, "loss": 1.3611, "learning_rate": 5.330490405117271e-08, "epoch": 0.004798176692856714, "percentage": 0.16, "elapsed_time": "0:00:44", "remaining_time": "7:42:23"} +{"current_steps": 15, "total_steps": 6252, "loss": 1.2608, "learning_rate": 7.995735607675907e-08, "epoch": 0.007197265039285071, "percentage": 0.24, "elapsed_time": "0:01:00", "remaining_time": "6:56:16"} +{"current_steps": 20, "total_steps": 6252, "loss": 1.2714, "learning_rate": 1.0660980810234542e-07, "epoch": 0.009596353385713428, "percentage": 0.32, "elapsed_time": "0:01:17", "remaining_time": "6:40:15"} +{"current_steps": 25, "total_steps": 6252, "loss": 1.4005, "learning_rate": 1.3326226012793176e-07, "epoch": 0.011995441732141785, "percentage": 0.4, "elapsed_time": "0:01:31", "remaining_time": "6:21:04"} +{"current_steps": 30, "total_steps": 6252, "loss": 1.3235, "learning_rate": 1.5991471215351813e-07, "epoch": 0.014394530078570143, "percentage": 0.48, "elapsed_time": "0:01:48", "remaining_time": "6:13:29"} +{"current_steps": 35, "total_steps": 6252, "loss": 1.2774, "learning_rate": 1.8656716417910447e-07, "epoch": 0.0167936184249985, "percentage": 0.56, "elapsed_time": "0:02:02", "remaining_time": "6:02:56"} +{"current_steps": 40, "total_steps": 6252, "loss": 1.1795, "learning_rate": 2.1321961620469084e-07, "epoch": 0.019192706771426857, "percentage": 0.64, "elapsed_time": "0:02:18", "remaining_time": "5:59:28"} +{"current_steps": 45, "total_steps": 6252, "loss": 1.345, "learning_rate": 2.398720682302772e-07, "epoch": 0.021591795117855216, "percentage": 0.72, "elapsed_time": "0:02:35", "remaining_time": "5:56:50"} +{"current_steps": 50, "total_steps": 6252, "loss": 1.3542, "learning_rate": 2.665245202558635e-07, "epoch": 0.02399088346428357, "percentage": 0.8, "elapsed_time": "0:02:49", "remaining_time": "5:49:34"} +{"current_steps": 55, "total_steps": 6252, "loss": 1.2539, "learning_rate": 2.931769722814499e-07, "epoch": 0.02638997181071193, "percentage": 0.88, "elapsed_time": "0:03:03", "remaining_time": "5:45:16"} +{"current_steps": 60, "total_steps": 6252, "loss": 1.4054, "learning_rate": 3.1982942430703626e-07, "epoch": 0.028789060157140285, "percentage": 0.96, "elapsed_time": "0:03:19", "remaining_time": "5:42:45"} +{"current_steps": 65, "total_steps": 6252, "loss": 1.4234, "learning_rate": 3.4648187633262263e-07, "epoch": 0.031188148503568644, "percentage": 1.04, "elapsed_time": "0:03:33", "remaining_time": "5:39:10"} +{"current_steps": 70, "total_steps": 6252, "loss": 1.1964, "learning_rate": 3.7313432835820895e-07, "epoch": 0.033587236849997, "percentage": 1.12, "elapsed_time": "0:03:49", "remaining_time": "5:38:17"} +{"current_steps": 75, "total_steps": 6252, "loss": 1.3206, "learning_rate": 3.9978678038379537e-07, "epoch": 0.03598632519642536, "percentage": 1.2, "elapsed_time": "0:04:05", "remaining_time": "5:36:39"} +{"current_steps": 80, "total_steps": 6252, "loss": 1.1716, "learning_rate": 4.264392324093817e-07, "epoch": 0.038385413542853714, "percentage": 1.28, "elapsed_time": "0:04:20", "remaining_time": "5:35:11"} +{"current_steps": 85, "total_steps": 6252, "loss": 1.3047, "learning_rate": 4.53091684434968e-07, "epoch": 0.04078450188928207, "percentage": 1.36, "elapsed_time": "0:04:34", "remaining_time": "5:32:14"} +{"current_steps": 90, "total_steps": 6252, "loss": 1.2356, "learning_rate": 4.797441364605544e-07, "epoch": 0.04318359023571043, "percentage": 1.44, "elapsed_time": "0:04:51", "remaining_time": "5:32:17"} +{"current_steps": 95, "total_steps": 6252, "loss": 1.2631, "learning_rate": 5.063965884861407e-07, "epoch": 0.04558267858213879, "percentage": 1.52, "elapsed_time": "0:05:06", "remaining_time": "5:30:37"} +{"current_steps": 100, "total_steps": 6252, "loss": 1.3332, "learning_rate": 5.33049040511727e-07, "epoch": 0.04798176692856714, "percentage": 1.6, "elapsed_time": "0:05:22", "remaining_time": "5:30:38"} +{"current_steps": 100, "total_steps": 6252, "eval_loss": 1.3139781951904297, "epoch": 0.04798176692856714, "percentage": 1.6, "elapsed_time": "0:08:20", "remaining_time": "8:32:55"} +{"current_steps": 105, "total_steps": 6252, "loss": 1.2867, "learning_rate": 5.597014925373135e-07, "epoch": 0.0503808552749955, "percentage": 1.68, "elapsed_time": "0:08:41", "remaining_time": "8:28:26"} +{"current_steps": 110, "total_steps": 6252, "loss": 1.2629, "learning_rate": 5.863539445628998e-07, "epoch": 0.05277994362142386, "percentage": 1.76, "elapsed_time": "0:09:01", "remaining_time": "8:23:48"} +{"current_steps": 115, "total_steps": 6252, "loss": 1.3406, "learning_rate": 6.130063965884862e-07, "epoch": 0.05517903196785222, "percentage": 1.84, "elapsed_time": "0:09:20", "remaining_time": "8:18:35"} +{"current_steps": 120, "total_steps": 6252, "loss": 1.2352, "learning_rate": 6.396588486140725e-07, "epoch": 0.05757812031428057, "percentage": 1.92, "elapsed_time": "0:09:40", "remaining_time": "8:14:43"} +{"current_steps": 125, "total_steps": 6252, "loss": 1.3535, "learning_rate": 6.663113006396589e-07, "epoch": 0.05997720866070893, "percentage": 2.0, "elapsed_time": "0:10:00", "remaining_time": "8:10:39"} +{"current_steps": 130, "total_steps": 6252, "loss": 1.299, "learning_rate": 6.929637526652453e-07, "epoch": 0.06237629700713729, "percentage": 2.08, "elapsed_time": "0:10:22", "remaining_time": "8:08:35"} +{"current_steps": 135, "total_steps": 6252, "loss": 1.2223, "learning_rate": 7.196162046908316e-07, "epoch": 0.06477538535356564, "percentage": 2.16, "elapsed_time": "0:10:42", "remaining_time": "8:04:52"} +{"current_steps": 140, "total_steps": 6252, "loss": 1.2659, "learning_rate": 7.462686567164179e-07, "epoch": 0.067174473699994, "percentage": 2.24, "elapsed_time": "0:11:00", "remaining_time": "8:00:45"} +{"current_steps": 145, "total_steps": 6252, "loss": 1.3394, "learning_rate": 7.729211087420044e-07, "epoch": 0.06957356204642236, "percentage": 2.32, "elapsed_time": "0:11:20", "remaining_time": "7:57:48"} +{"current_steps": 150, "total_steps": 6252, "loss": 1.3174, "learning_rate": 7.995735607675907e-07, "epoch": 0.07197265039285072, "percentage": 2.4, "elapsed_time": "0:11:41", "remaining_time": "7:55:19"} +{"current_steps": 155, "total_steps": 6252, "loss": 1.2811, "learning_rate": 8.26226012793177e-07, "epoch": 0.07437173873927908, "percentage": 2.48, "elapsed_time": "0:12:01", "remaining_time": "7:53:19"} +{"current_steps": 160, "total_steps": 6252, "loss": 1.2707, "learning_rate": 8.528784648187634e-07, "epoch": 0.07677082708570743, "percentage": 2.56, "elapsed_time": "0:12:23", "remaining_time": "7:51:41"} +{"current_steps": 165, "total_steps": 6252, "loss": 1.2574, "learning_rate": 8.795309168443497e-07, "epoch": 0.07916991543213579, "percentage": 2.64, "elapsed_time": "0:12:45", "remaining_time": "7:50:24"} +{"current_steps": 170, "total_steps": 6252, "loss": 1.3314, "learning_rate": 9.06183368869936e-07, "epoch": 0.08156900377856414, "percentage": 2.72, "elapsed_time": "0:13:04", "remaining_time": "7:47:47"} +{"current_steps": 175, "total_steps": 6252, "loss": 1.3046, "learning_rate": 9.328358208955225e-07, "epoch": 0.0839680921249925, "percentage": 2.8, "elapsed_time": "0:13:25", "remaining_time": "7:46:16"} +{"current_steps": 180, "total_steps": 6252, "loss": 1.3634, "learning_rate": 9.594882729211088e-07, "epoch": 0.08636718047142086, "percentage": 2.88, "elapsed_time": "0:13:45", "remaining_time": "7:44:17"} +{"current_steps": 185, "total_steps": 6252, "loss": 1.2065, "learning_rate": 9.861407249466952e-07, "epoch": 0.08876626881784921, "percentage": 2.96, "elapsed_time": "0:14:05", "remaining_time": "7:41:56"} +{"current_steps": 190, "total_steps": 6252, "loss": 1.188, "learning_rate": 1.0127931769722815e-06, "epoch": 0.09116535716427758, "percentage": 3.04, "elapsed_time": "0:14:26", "remaining_time": "7:40:35"} +{"current_steps": 195, "total_steps": 6252, "loss": 1.3453, "learning_rate": 1.0394456289978678e-06, "epoch": 0.09356444551070593, "percentage": 3.12, "elapsed_time": "0:14:45", "remaining_time": "7:38:40"} +{"current_steps": 200, "total_steps": 6252, "loss": 1.2185, "learning_rate": 1.066098081023454e-06, "epoch": 0.09596353385713428, "percentage": 3.2, "elapsed_time": "0:15:06", "remaining_time": "7:37:12"} +{"current_steps": 200, "total_steps": 6252, "eval_loss": 1.2878996133804321, "epoch": 0.09596353385713428, "percentage": 3.2, "elapsed_time": "0:18:02", "remaining_time": "9:06:00"} +{"current_steps": 205, "total_steps": 6252, "loss": 1.2153, "learning_rate": 1.0927505330490406e-06, "epoch": 0.09836262220356265, "percentage": 3.28, "elapsed_time": "0:18:56", "remaining_time": "9:18:55"} +{"current_steps": 210, "total_steps": 6252, "loss": 1.3089, "learning_rate": 1.119402985074627e-06, "epoch": 0.100761710549991, "percentage": 3.36, "elapsed_time": "0:19:18", "remaining_time": "9:15:29"} +{"current_steps": 215, "total_steps": 6252, "loss": 1.228, "learning_rate": 1.1460554371002133e-06, "epoch": 0.10316079889641937, "percentage": 3.44, "elapsed_time": "0:19:40", "remaining_time": "9:12:20"} +{"current_steps": 220, "total_steps": 6252, "loss": 1.293, "learning_rate": 1.1727078891257996e-06, "epoch": 0.10555988724284772, "percentage": 3.52, "elapsed_time": "0:20:00", "remaining_time": "9:08:32"} +{"current_steps": 225, "total_steps": 6252, "loss": 1.2792, "learning_rate": 1.199360341151386e-06, "epoch": 0.10795897558927607, "percentage": 3.6, "elapsed_time": "0:20:22", "remaining_time": "9:05:37"} +{"current_steps": 230, "total_steps": 6252, "loss": 1.3112, "learning_rate": 1.2260127931769724e-06, "epoch": 0.11035806393570444, "percentage": 3.68, "elapsed_time": "0:20:43", "remaining_time": "9:02:26"} +{"current_steps": 235, "total_steps": 6252, "loss": 1.2376, "learning_rate": 1.2526652452025587e-06, "epoch": 0.11275715228213279, "percentage": 3.76, "elapsed_time": "0:21:01", "remaining_time": "8:58:23"} +{"current_steps": 240, "total_steps": 6252, "loss": 1.2712, "learning_rate": 1.279317697228145e-06, "epoch": 0.11515624062856114, "percentage": 3.84, "elapsed_time": "0:21:22", "remaining_time": "8:55:19"} +{"current_steps": 245, "total_steps": 6252, "loss": 1.2524, "learning_rate": 1.3059701492537314e-06, "epoch": 0.1175553289749895, "percentage": 3.92, "elapsed_time": "0:21:40", "remaining_time": "8:51:28"} +{"current_steps": 250, "total_steps": 6252, "loss": 1.3747, "learning_rate": 1.3326226012793179e-06, "epoch": 0.11995441732141786, "percentage": 4.0, "elapsed_time": "0:22:00", "remaining_time": "8:48:20"} +{"current_steps": 255, "total_steps": 6252, "loss": 1.1628, "learning_rate": 1.3592750533049042e-06, "epoch": 0.12235350566784622, "percentage": 4.08, "elapsed_time": "0:22:19", "remaining_time": "8:44:56"} +{"current_steps": 260, "total_steps": 6252, "loss": 1.2235, "learning_rate": 1.3859275053304905e-06, "epoch": 0.12475259401427458, "percentage": 4.16, "elapsed_time": "0:22:39", "remaining_time": "8:42:12"} +{"current_steps": 265, "total_steps": 6252, "loss": 1.2642, "learning_rate": 1.412579957356077e-06, "epoch": 0.12715168236070293, "percentage": 4.24, "elapsed_time": "0:22:58", "remaining_time": "8:39:03"} +{"current_steps": 270, "total_steps": 6252, "loss": 1.2196, "learning_rate": 1.4392324093816632e-06, "epoch": 0.12955077070713128, "percentage": 4.32, "elapsed_time": "0:23:18", "remaining_time": "8:36:14"} +{"current_steps": 275, "total_steps": 6252, "loss": 1.2465, "learning_rate": 1.4658848614072497e-06, "epoch": 0.13194985905355966, "percentage": 4.4, "elapsed_time": "0:23:38", "remaining_time": "8:33:42"} +{"current_steps": 280, "total_steps": 6252, "loss": 1.2708, "learning_rate": 1.4925373134328358e-06, "epoch": 0.134348947399988, "percentage": 4.48, "elapsed_time": "0:23:57", "remaining_time": "8:31:06"} +{"current_steps": 285, "total_steps": 6252, "loss": 1.1976, "learning_rate": 1.5191897654584223e-06, "epoch": 0.13674803574641636, "percentage": 4.56, "elapsed_time": "0:24:18", "remaining_time": "8:29:05"} +{"current_steps": 290, "total_steps": 6252, "loss": 1.2336, "learning_rate": 1.5458422174840088e-06, "epoch": 0.13914712409284472, "percentage": 4.64, "elapsed_time": "0:24:39", "remaining_time": "8:27:05"} +{"current_steps": 295, "total_steps": 6252, "loss": 1.2791, "learning_rate": 1.572494669509595e-06, "epoch": 0.14154621243927307, "percentage": 4.72, "elapsed_time": "0:24:59", "remaining_time": "8:24:30"} +{"current_steps": 300, "total_steps": 6252, "loss": 1.1976, "learning_rate": 1.5991471215351815e-06, "epoch": 0.14394530078570145, "percentage": 4.8, "elapsed_time": "0:25:18", "remaining_time": "8:22:13"} +{"current_steps": 300, "total_steps": 6252, "eval_loss": 1.2532644271850586, "epoch": 0.14394530078570145, "percentage": 4.8, "elapsed_time": "0:28:14", "remaining_time": "9:20:27"} +{"current_steps": 305, "total_steps": 6252, "loss": 1.2925, "learning_rate": 1.6257995735607676e-06, "epoch": 0.1463443891321298, "percentage": 4.88, "elapsed_time": "0:28:36", "remaining_time": "9:17:57"} +{"current_steps": 310, "total_steps": 6252, "loss": 1.2051, "learning_rate": 1.652452025586354e-06, "epoch": 0.14874347747855815, "percentage": 4.96, "elapsed_time": "0:28:55", "remaining_time": "9:14:30"} +{"current_steps": 315, "total_steps": 6252, "loss": 1.3741, "learning_rate": 1.6791044776119406e-06, "epoch": 0.1511425658249865, "percentage": 5.04, "elapsed_time": "0:29:15", "remaining_time": "9:11:31"} +{"current_steps": 320, "total_steps": 6252, "loss": 1.219, "learning_rate": 1.7057569296375267e-06, "epoch": 0.15354165417141485, "percentage": 5.12, "elapsed_time": "0:29:35", "remaining_time": "9:08:26"} +{"current_steps": 325, "total_steps": 6252, "loss": 1.233, "learning_rate": 1.7324093816631133e-06, "epoch": 0.1559407425178432, "percentage": 5.2, "elapsed_time": "0:29:56", "remaining_time": "9:06:04"} +{"current_steps": 330, "total_steps": 6252, "loss": 1.179, "learning_rate": 1.7590618336886994e-06, "epoch": 0.15833983086427159, "percentage": 5.28, "elapsed_time": "0:30:17", "remaining_time": "9:03:41"} +{"current_steps": 335, "total_steps": 6252, "loss": 1.2121, "learning_rate": 1.7857142857142859e-06, "epoch": 0.16073891921069994, "percentage": 5.36, "elapsed_time": "0:30:36", "remaining_time": "9:00:38"} +{"current_steps": 340, "total_steps": 6252, "loss": 1.1753, "learning_rate": 1.812366737739872e-06, "epoch": 0.1631380075571283, "percentage": 5.44, "elapsed_time": "0:30:56", "remaining_time": "8:58:01"} +{"current_steps": 345, "total_steps": 6252, "loss": 1.2174, "learning_rate": 1.8390191897654585e-06, "epoch": 0.16553709590355664, "percentage": 5.52, "elapsed_time": "0:31:16", "remaining_time": "8:55:32"} +{"current_steps": 350, "total_steps": 6252, "loss": 1.219, "learning_rate": 1.865671641791045e-06, "epoch": 0.167936184249985, "percentage": 5.6, "elapsed_time": "0:31:36", "remaining_time": "8:52:51"} +{"current_steps": 355, "total_steps": 6252, "loss": 1.1994, "learning_rate": 1.8923240938166312e-06, "epoch": 0.17033527259641337, "percentage": 5.68, "elapsed_time": "0:31:55", "remaining_time": "8:50:15"} +{"current_steps": 360, "total_steps": 6252, "loss": 1.2914, "learning_rate": 1.9189765458422177e-06, "epoch": 0.17273436094284172, "percentage": 5.76, "elapsed_time": "0:32:15", "remaining_time": "8:48:01"} +{"current_steps": 365, "total_steps": 6252, "loss": 1.2052, "learning_rate": 1.945628997867804e-06, "epoch": 0.17513344928927008, "percentage": 5.84, "elapsed_time": "0:32:35", "remaining_time": "8:45:47"} +{"current_steps": 370, "total_steps": 6252, "loss": 1.2929, "learning_rate": 1.9722814498933903e-06, "epoch": 0.17753253763569843, "percentage": 5.92, "elapsed_time": "0:32:56", "remaining_time": "8:43:36"} +{"current_steps": 375, "total_steps": 6252, "loss": 1.2518, "learning_rate": 1.9989339019189766e-06, "epoch": 0.17993162598212678, "percentage": 6.0, "elapsed_time": "0:33:15", "remaining_time": "8:41:15"} +{"current_steps": 380, "total_steps": 6252, "loss": 1.1894, "learning_rate": 2.025586353944563e-06, "epoch": 0.18233071432855516, "percentage": 6.08, "elapsed_time": "0:33:35", "remaining_time": "8:39:07"} +{"current_steps": 385, "total_steps": 6252, "loss": 1.2302, "learning_rate": 2.0522388059701497e-06, "epoch": 0.1847298026749835, "percentage": 6.16, "elapsed_time": "0:33:54", "remaining_time": "8:36:51"} +{"current_steps": 390, "total_steps": 6252, "loss": 1.2647, "learning_rate": 2.0788912579957356e-06, "epoch": 0.18712889102141186, "percentage": 6.24, "elapsed_time": "0:34:13", "remaining_time": "8:34:32"} +{"current_steps": 395, "total_steps": 6252, "loss": 1.1564, "learning_rate": 2.1055437100213223e-06, "epoch": 0.18952797936784022, "percentage": 6.32, "elapsed_time": "0:34:35", "remaining_time": "8:32:51"} +{"current_steps": 400, "total_steps": 6252, "loss": 1.1627, "learning_rate": 2.132196162046908e-06, "epoch": 0.19192706771426857, "percentage": 6.4, "elapsed_time": "0:34:55", "remaining_time": "8:30:56"} +{"current_steps": 400, "total_steps": 6252, "eval_loss": 1.2169007062911987, "epoch": 0.19192706771426857, "percentage": 6.4, "elapsed_time": "0:37:51", "remaining_time": "9:13:52"} +{"current_steps": 405, "total_steps": 6252, "loss": 1.25, "learning_rate": 2.158848614072495e-06, "epoch": 0.19432615606069695, "percentage": 6.48, "elapsed_time": "0:38:45", "remaining_time": "9:19:38"} +{"current_steps": 410, "total_steps": 6252, "loss": 1.1966, "learning_rate": 2.1855010660980813e-06, "epoch": 0.1967252444071253, "percentage": 6.56, "elapsed_time": "0:39:04", "remaining_time": "9:16:47"} +{"current_steps": 415, "total_steps": 6252, "loss": 1.1397, "learning_rate": 2.2121535181236676e-06, "epoch": 0.19912433275355365, "percentage": 6.64, "elapsed_time": "0:39:24", "remaining_time": "9:14:11"} +{"current_steps": 420, "total_steps": 6252, "loss": 1.2399, "learning_rate": 2.238805970149254e-06, "epoch": 0.201523421099982, "percentage": 6.72, "elapsed_time": "0:39:44", "remaining_time": "9:11:56"} +{"current_steps": 425, "total_steps": 6252, "loss": 1.1008, "learning_rate": 2.26545842217484e-06, "epoch": 0.20392250944641035, "percentage": 6.8, "elapsed_time": "0:40:04", "remaining_time": "9:09:23"} +{"current_steps": 430, "total_steps": 6252, "loss": 1.2229, "learning_rate": 2.2921108742004265e-06, "epoch": 0.20632159779283873, "percentage": 6.88, "elapsed_time": "0:40:23", "remaining_time": "9:06:53"} +{"current_steps": 435, "total_steps": 6252, "loss": 1.1546, "learning_rate": 2.318763326226013e-06, "epoch": 0.2087206861392671, "percentage": 6.96, "elapsed_time": "0:40:43", "remaining_time": "9:04:40"} +{"current_steps": 440, "total_steps": 6252, "loss": 1.1509, "learning_rate": 2.345415778251599e-06, "epoch": 0.21111977448569544, "percentage": 7.04, "elapsed_time": "0:41:04", "remaining_time": "9:02:36"} +{"current_steps": 445, "total_steps": 6252, "loss": 1.1714, "learning_rate": 2.372068230277186e-06, "epoch": 0.2135188628321238, "percentage": 7.12, "elapsed_time": "0:41:24", "remaining_time": "9:00:24"} +{"current_steps": 450, "total_steps": 6252, "loss": 1.2313, "learning_rate": 2.398720682302772e-06, "epoch": 0.21591795117855214, "percentage": 7.2, "elapsed_time": "0:41:44", "remaining_time": "8:58:16"} +{"current_steps": 455, "total_steps": 6252, "loss": 1.1727, "learning_rate": 2.4253731343283585e-06, "epoch": 0.2183170395249805, "percentage": 7.28, "elapsed_time": "0:42:04", "remaining_time": "8:56:05"} +{"current_steps": 460, "total_steps": 6252, "loss": 1.2308, "learning_rate": 2.452025586353945e-06, "epoch": 0.22071612787140887, "percentage": 7.36, "elapsed_time": "0:42:23", "remaining_time": "8:53:44"} +{"current_steps": 465, "total_steps": 6252, "loss": 1.1464, "learning_rate": 2.478678038379531e-06, "epoch": 0.22311521621783723, "percentage": 7.44, "elapsed_time": "0:42:45", "remaining_time": "8:52:03"} +{"current_steps": 470, "total_steps": 6252, "loss": 1.0961, "learning_rate": 2.5053304904051175e-06, "epoch": 0.22551430456426558, "percentage": 7.52, "elapsed_time": "0:43:05", "remaining_time": "8:50:13"} +{"current_steps": 475, "total_steps": 6252, "loss": 1.2813, "learning_rate": 2.531982942430704e-06, "epoch": 0.22791339291069393, "percentage": 7.6, "elapsed_time": "0:43:25", "remaining_time": "8:48:06"} +{"current_steps": 480, "total_steps": 6252, "loss": 1.1666, "learning_rate": 2.55863539445629e-06, "epoch": 0.23031248125712228, "percentage": 7.68, "elapsed_time": "0:43:47", "remaining_time": "8:46:36"} +{"current_steps": 485, "total_steps": 6252, "loss": 1.1806, "learning_rate": 2.5852878464818764e-06, "epoch": 0.23271156960355066, "percentage": 7.76, "elapsed_time": "0:44:07", "remaining_time": "8:44:44"} +{"current_steps": 490, "total_steps": 6252, "loss": 1.2986, "learning_rate": 2.6119402985074627e-06, "epoch": 0.235110657949979, "percentage": 7.84, "elapsed_time": "0:44:26", "remaining_time": "8:42:34"} +{"current_steps": 495, "total_steps": 6252, "loss": 1.1637, "learning_rate": 2.6385927505330495e-06, "epoch": 0.23750974629640736, "percentage": 7.92, "elapsed_time": "0:44:45", "remaining_time": "8:40:33"} +{"current_steps": 500, "total_steps": 6252, "loss": 1.178, "learning_rate": 2.6652452025586358e-06, "epoch": 0.23990883464283572, "percentage": 8.0, "elapsed_time": "0:45:04", "remaining_time": "8:38:33"} +{"current_steps": 500, "total_steps": 6252, "eval_loss": 1.1765925884246826, "epoch": 0.23990883464283572, "percentage": 8.0, "elapsed_time": "0:48:00", "remaining_time": "9:12:18"} +{"current_steps": 505, "total_steps": 6252, "loss": 1.0748, "learning_rate": 2.6918976545842217e-06, "epoch": 0.24230792298926407, "percentage": 8.08, "elapsed_time": "0:48:19", "remaining_time": "9:09:55"} +{"current_steps": 510, "total_steps": 6252, "loss": 1.0757, "learning_rate": 2.7185501066098084e-06, "epoch": 0.24470701133569245, "percentage": 8.16, "elapsed_time": "0:48:39", "remaining_time": "9:07:51"} +{"current_steps": 515, "total_steps": 6252, "loss": 1.2197, "learning_rate": 2.7452025586353947e-06, "epoch": 0.2471060996821208, "percentage": 8.24, "elapsed_time": "0:48:58", "remaining_time": "9:05:39"} +{"current_steps": 520, "total_steps": 6252, "loss": 1.2274, "learning_rate": 2.771855010660981e-06, "epoch": 0.24950518802854915, "percentage": 8.32, "elapsed_time": "0:49:19", "remaining_time": "9:03:47"} +{"current_steps": 525, "total_steps": 6252, "loss": 1.1705, "learning_rate": 2.798507462686567e-06, "epoch": 0.25190427637497753, "percentage": 8.4, "elapsed_time": "0:49:40", "remaining_time": "9:01:53"} +{"current_steps": 530, "total_steps": 6252, "loss": 1.179, "learning_rate": 2.825159914712154e-06, "epoch": 0.25430336472140586, "percentage": 8.48, "elapsed_time": "0:50:00", "remaining_time": "8:59:52"} +{"current_steps": 535, "total_steps": 6252, "loss": 1.1046, "learning_rate": 2.85181236673774e-06, "epoch": 0.25670245306783424, "percentage": 8.56, "elapsed_time": "0:50:20", "remaining_time": "8:57:57"} +{"current_steps": 540, "total_steps": 6252, "loss": 1.1889, "learning_rate": 2.8784648187633263e-06, "epoch": 0.25910154141426256, "percentage": 8.64, "elapsed_time": "0:50:40", "remaining_time": "8:56:06"} +{"current_steps": 545, "total_steps": 6252, "loss": 1.136, "learning_rate": 2.905117270788913e-06, "epoch": 0.26150062976069094, "percentage": 8.72, "elapsed_time": "0:50:59", "remaining_time": "8:53:57"} +{"current_steps": 550, "total_steps": 6252, "loss": 1.1492, "learning_rate": 2.9317697228144994e-06, "epoch": 0.2638997181071193, "percentage": 8.8, "elapsed_time": "0:51:20", "remaining_time": "8:52:13"} +{"current_steps": 555, "total_steps": 6252, "loss": 1.1257, "learning_rate": 2.9584221748400853e-06, "epoch": 0.26629880645354764, "percentage": 8.88, "elapsed_time": "0:51:40", "remaining_time": "8:50:23"} +{"current_steps": 560, "total_steps": 6252, "loss": 1.0821, "learning_rate": 2.9850746268656716e-06, "epoch": 0.268697894799976, "percentage": 8.96, "elapsed_time": "0:51:59", "remaining_time": "8:48:31"} +{"current_steps": 565, "total_steps": 6252, "loss": 1.1404, "learning_rate": 3.0117270788912583e-06, "epoch": 0.27109698314640435, "percentage": 9.04, "elapsed_time": "0:52:21", "remaining_time": "8:47:01"} +{"current_steps": 570, "total_steps": 6252, "loss": 1.0904, "learning_rate": 3.0383795309168446e-06, "epoch": 0.2734960714928327, "percentage": 9.12, "elapsed_time": "0:52:41", "remaining_time": "8:45:10"} +{"current_steps": 575, "total_steps": 6252, "loss": 1.0591, "learning_rate": 3.065031982942431e-06, "epoch": 0.2758951598392611, "percentage": 9.2, "elapsed_time": "0:53:01", "remaining_time": "8:43:27"} +{"current_steps": 580, "total_steps": 6252, "loss": 1.0304, "learning_rate": 3.0916844349680177e-06, "epoch": 0.27829424818568943, "percentage": 9.28, "elapsed_time": "0:53:20", "remaining_time": "8:41:43"} +{"current_steps": 585, "total_steps": 6252, "loss": 1.1397, "learning_rate": 3.1183368869936036e-06, "epoch": 0.2806933365321178, "percentage": 9.36, "elapsed_time": "0:53:41", "remaining_time": "8:40:03"} +{"current_steps": 590, "total_steps": 6252, "loss": 1.1217, "learning_rate": 3.14498933901919e-06, "epoch": 0.28309242487854613, "percentage": 9.44, "elapsed_time": "0:54:01", "remaining_time": "8:38:24"} +{"current_steps": 595, "total_steps": 6252, "loss": 1.2383, "learning_rate": 3.1716417910447766e-06, "epoch": 0.2854915132249745, "percentage": 9.52, "elapsed_time": "0:54:21", "remaining_time": "8:36:49"} +{"current_steps": 600, "total_steps": 6252, "loss": 1.133, "learning_rate": 3.198294243070363e-06, "epoch": 0.2878906015714029, "percentage": 9.6, "elapsed_time": "0:54:41", "remaining_time": "8:35:10"} +{"current_steps": 600, "total_steps": 6252, "eval_loss": 1.1296346187591553, "epoch": 0.2878906015714029, "percentage": 9.6, "elapsed_time": "0:57:37", "remaining_time": "9:02:47"} +{"current_steps": 605, "total_steps": 6252, "loss": 1.0715, "learning_rate": 3.224946695095949e-06, "epoch": 0.2902896899178312, "percentage": 9.68, "elapsed_time": "0:58:30", "remaining_time": "9:06:10"} +{"current_steps": 610, "total_steps": 6252, "loss": 1.0086, "learning_rate": 3.251599147121535e-06, "epoch": 0.2926887782642596, "percentage": 9.76, "elapsed_time": "0:58:51", "remaining_time": "9:04:23"} +{"current_steps": 615, "total_steps": 6252, "loss": 1.0881, "learning_rate": 3.278251599147122e-06, "epoch": 0.2950878666106879, "percentage": 9.84, "elapsed_time": "0:59:13", "remaining_time": "9:02:46"} +{"current_steps": 620, "total_steps": 6252, "loss": 1.0767, "learning_rate": 3.304904051172708e-06, "epoch": 0.2974869549571163, "percentage": 9.92, "elapsed_time": "0:59:34", "remaining_time": "9:01:14"} +{"current_steps": 625, "total_steps": 6252, "loss": 1.0721, "learning_rate": 3.3315565031982945e-06, "epoch": 0.2998860433035447, "percentage": 10.0, "elapsed_time": "0:59:54", "remaining_time": "8:59:17"} +{"current_steps": 630, "total_steps": 6252, "loss": 1.1838, "learning_rate": 3.3582089552238813e-06, "epoch": 0.302285131649973, "percentage": 10.08, "elapsed_time": "1:00:12", "remaining_time": "8:57:18"} +{"current_steps": 635, "total_steps": 6252, "loss": 1.0761, "learning_rate": 3.384861407249467e-06, "epoch": 0.3046842199964014, "percentage": 10.16, "elapsed_time": "1:00:31", "remaining_time": "8:55:22"} +{"current_steps": 640, "total_steps": 6252, "loss": 1.0424, "learning_rate": 3.4115138592750535e-06, "epoch": 0.3070833083428297, "percentage": 10.24, "elapsed_time": "1:00:51", "remaining_time": "8:53:41"} +{"current_steps": 645, "total_steps": 6252, "loss": 1.0834, "learning_rate": 3.4381663113006398e-06, "epoch": 0.3094823966892581, "percentage": 10.32, "elapsed_time": "1:01:12", "remaining_time": "8:52:01"} +{"current_steps": 650, "total_steps": 6252, "loss": 1.1291, "learning_rate": 3.4648187633262265e-06, "epoch": 0.3118814850356864, "percentage": 10.4, "elapsed_time": "1:01:32", "remaining_time": "8:50:26"} +{"current_steps": 655, "total_steps": 6252, "loss": 1.1013, "learning_rate": 3.491471215351813e-06, "epoch": 0.3142805733821148, "percentage": 10.48, "elapsed_time": "1:01:52", "remaining_time": "8:48:43"} +{"current_steps": 660, "total_steps": 6252, "loss": 1.0895, "learning_rate": 3.5181236673773987e-06, "epoch": 0.31667966172854317, "percentage": 10.56, "elapsed_time": "1:02:12", "remaining_time": "8:47:07"} +{"current_steps": 665, "total_steps": 6252, "loss": 1.1223, "learning_rate": 3.5447761194029855e-06, "epoch": 0.3190787500749715, "percentage": 10.64, "elapsed_time": "1:02:32", "remaining_time": "8:45:28"} +{"current_steps": 670, "total_steps": 6252, "loss": 1.0967, "learning_rate": 3.5714285714285718e-06, "epoch": 0.3214778384213999, "percentage": 10.72, "elapsed_time": "1:02:52", "remaining_time": "8:43:46"} +{"current_steps": 675, "total_steps": 6252, "loss": 1.1102, "learning_rate": 3.598081023454158e-06, "epoch": 0.3238769267678282, "percentage": 10.8, "elapsed_time": "1:03:12", "remaining_time": "8:42:13"} +{"current_steps": 680, "total_steps": 6252, "loss": 1.1283, "learning_rate": 3.624733475479744e-06, "epoch": 0.3262760151142566, "percentage": 10.88, "elapsed_time": "1:03:32", "remaining_time": "8:40:36"} +{"current_steps": 685, "total_steps": 6252, "loss": 1.0848, "learning_rate": 3.651385927505331e-06, "epoch": 0.32867510346068496, "percentage": 10.96, "elapsed_time": "1:03:51", "remaining_time": "8:39:01"} +{"current_steps": 690, "total_steps": 6252, "loss": 1.0805, "learning_rate": 3.678038379530917e-06, "epoch": 0.3310741918071133, "percentage": 11.04, "elapsed_time": "1:04:13", "remaining_time": "8:37:43"} +{"current_steps": 695, "total_steps": 6252, "loss": 1.0819, "learning_rate": 3.7046908315565034e-06, "epoch": 0.33347328015354166, "percentage": 11.12, "elapsed_time": "1:04:34", "remaining_time": "8:36:21"} +{"current_steps": 700, "total_steps": 6252, "loss": 1.0466, "learning_rate": 3.73134328358209e-06, "epoch": 0.33587236849997, "percentage": 11.2, "elapsed_time": "1:04:55", "remaining_time": "8:34:55"} +{"current_steps": 700, "total_steps": 6252, "eval_loss": 1.0983320474624634, "epoch": 0.33587236849997, "percentage": 11.2, "elapsed_time": "1:08:49", "remaining_time": "9:05:49"} +{"current_steps": 705, "total_steps": 6252, "loss": 1.1632, "learning_rate": 3.7579957356076764e-06, "epoch": 0.33827145684639837, "percentage": 11.28, "elapsed_time": "1:09:10", "remaining_time": "9:04:14"} +{"current_steps": 710, "total_steps": 6252, "loss": 1.0408, "learning_rate": 3.7846481876332623e-06, "epoch": 0.34067054519282675, "percentage": 11.36, "elapsed_time": "1:09:32", "remaining_time": "9:02:46"} +{"current_steps": 715, "total_steps": 6252, "loss": 1.0748, "learning_rate": 3.8113006396588486e-06, "epoch": 0.34306963353925507, "percentage": 11.44, "elapsed_time": "1:09:52", "remaining_time": "9:01:05"} +{"current_steps": 720, "total_steps": 6252, "loss": 1.0707, "learning_rate": 3.837953091684435e-06, "epoch": 0.34546872188568345, "percentage": 11.52, "elapsed_time": "1:10:13", "remaining_time": "8:59:34"} +{"current_steps": 725, "total_steps": 6252, "loss": 1.1292, "learning_rate": 3.864605543710022e-06, "epoch": 0.3478678102321118, "percentage": 11.6, "elapsed_time": "1:10:32", "remaining_time": "8:57:47"} +{"current_steps": 730, "total_steps": 6252, "loss": 1.0883, "learning_rate": 3.891257995735608e-06, "epoch": 0.35026689857854015, "percentage": 11.68, "elapsed_time": "1:10:52", "remaining_time": "8:56:06"} +{"current_steps": 735, "total_steps": 6252, "loss": 1.0613, "learning_rate": 3.917910447761194e-06, "epoch": 0.35266598692496853, "percentage": 11.76, "elapsed_time": "1:11:14", "remaining_time": "8:54:44"} +{"current_steps": 740, "total_steps": 6252, "loss": 1.1056, "learning_rate": 3.944562899786781e-06, "epoch": 0.35506507527139686, "percentage": 11.84, "elapsed_time": "1:11:36", "remaining_time": "8:53:20"} +{"current_steps": 745, "total_steps": 6252, "loss": 1.1064, "learning_rate": 3.971215351812367e-06, "epoch": 0.35746416361782524, "percentage": 11.92, "elapsed_time": "1:11:57", "remaining_time": "8:51:53"} +{"current_steps": 750, "total_steps": 6252, "loss": 1.0194, "learning_rate": 3.997867803837953e-06, "epoch": 0.35986325196425356, "percentage": 12.0, "elapsed_time": "1:12:20", "remaining_time": "8:50:42"} +{"current_steps": 755, "total_steps": 6252, "loss": 1.0052, "learning_rate": 4.0245202558635396e-06, "epoch": 0.36226234031068194, "percentage": 12.08, "elapsed_time": "1:12:41", "remaining_time": "8:49:14"} +{"current_steps": 760, "total_steps": 6252, "loss": 1.0548, "learning_rate": 4.051172707889126e-06, "epoch": 0.3646614286571103, "percentage": 12.16, "elapsed_time": "1:13:02", "remaining_time": "8:47:48"} +{"current_steps": 765, "total_steps": 6252, "loss": 1.127, "learning_rate": 4.077825159914712e-06, "epoch": 0.36706051700353864, "percentage": 12.24, "elapsed_time": "1:13:23", "remaining_time": "8:46:27"} +{"current_steps": 770, "total_steps": 6252, "loss": 0.9835, "learning_rate": 4.104477611940299e-06, "epoch": 0.369459605349967, "percentage": 12.32, "elapsed_time": "1:13:44", "remaining_time": "8:45:03"} +{"current_steps": 775, "total_steps": 6252, "loss": 1.1199, "learning_rate": 4.131130063965885e-06, "epoch": 0.37185869369639535, "percentage": 12.4, "elapsed_time": "1:14:05", "remaining_time": "8:43:35"} +{"current_steps": 780, "total_steps": 6252, "loss": 1.0222, "learning_rate": 4.157782515991471e-06, "epoch": 0.37425778204282373, "percentage": 12.48, "elapsed_time": "1:14:26", "remaining_time": "8:42:16"} +{"current_steps": 785, "total_steps": 6252, "loss": 1.1066, "learning_rate": 4.184434968017058e-06, "epoch": 0.3766568703892521, "percentage": 12.56, "elapsed_time": "1:14:46", "remaining_time": "8:40:46"} +{"current_steps": 790, "total_steps": 6252, "loss": 1.0559, "learning_rate": 4.211087420042645e-06, "epoch": 0.37905595873568043, "percentage": 12.64, "elapsed_time": "1:15:08", "remaining_time": "8:39:34"} +{"current_steps": 795, "total_steps": 6252, "loss": 0.974, "learning_rate": 4.237739872068231e-06, "epoch": 0.3814550470821088, "percentage": 12.72, "elapsed_time": "1:15:28", "remaining_time": "8:38:07"} +{"current_steps": 800, "total_steps": 6252, "loss": 1.0657, "learning_rate": 4.264392324093816e-06, "epoch": 0.38385413542853714, "percentage": 12.8, "elapsed_time": "1:15:49", "remaining_time": "8:36:44"} +{"current_steps": 800, "total_steps": 6252, "eval_loss": 1.0770481824874878, "epoch": 0.38385413542853714, "percentage": 12.8, "elapsed_time": "1:18:46", "remaining_time": "8:56:51"} +{"current_steps": 805, "total_steps": 6252, "loss": 1.0495, "learning_rate": 4.2910447761194036e-06, "epoch": 0.3862532237749655, "percentage": 12.88, "elapsed_time": "1:19:41", "remaining_time": "8:59:12"} +{"current_steps": 810, "total_steps": 6252, "loss": 1.0879, "learning_rate": 4.31769722814499e-06, "epoch": 0.3886523121213939, "percentage": 12.96, "elapsed_time": "1:20:02", "remaining_time": "8:57:43"} +{"current_steps": 815, "total_steps": 6252, "loss": 1.0887, "learning_rate": 4.344349680170576e-06, "epoch": 0.3910514004678222, "percentage": 13.04, "elapsed_time": "1:20:22", "remaining_time": "8:56:12"} +{"current_steps": 820, "total_steps": 6252, "loss": 1.0342, "learning_rate": 4.3710021321961625e-06, "epoch": 0.3934504888142506, "percentage": 13.12, "elapsed_time": "1:20:44", "remaining_time": "8:54:52"} +{"current_steps": 825, "total_steps": 6252, "loss": 1.0058, "learning_rate": 4.397654584221749e-06, "epoch": 0.3958495771606789, "percentage": 13.2, "elapsed_time": "1:21:03", "remaining_time": "8:53:11"} +{"current_steps": 830, "total_steps": 6252, "loss": 0.9424, "learning_rate": 4.424307036247335e-06, "epoch": 0.3982486655071073, "percentage": 13.28, "elapsed_time": "1:21:23", "remaining_time": "8:51:41"} +{"current_steps": 835, "total_steps": 6252, "loss": 1.0973, "learning_rate": 4.4509594882729215e-06, "epoch": 0.4006477538535357, "percentage": 13.36, "elapsed_time": "1:21:44", "remaining_time": "8:50:14"} +{"current_steps": 840, "total_steps": 6252, "loss": 1.1379, "learning_rate": 4.477611940298508e-06, "epoch": 0.403046842199964, "percentage": 13.44, "elapsed_time": "1:22:02", "remaining_time": "8:48:35"} +{"current_steps": 845, "total_steps": 6252, "loss": 1.0758, "learning_rate": 4.504264392324094e-06, "epoch": 0.4054459305463924, "percentage": 13.52, "elapsed_time": "1:22:23", "remaining_time": "8:47:15"} +{"current_steps": 850, "total_steps": 6252, "loss": 1.1237, "learning_rate": 4.53091684434968e-06, "epoch": 0.4078450188928207, "percentage": 13.6, "elapsed_time": "1:22:45", "remaining_time": "8:45:56"} +{"current_steps": 855, "total_steps": 6252, "loss": 1.083, "learning_rate": 4.557569296375267e-06, "epoch": 0.4102441072392491, "percentage": 13.68, "elapsed_time": "1:23:05", "remaining_time": "8:44:29"} +{"current_steps": 860, "total_steps": 6252, "loss": 1.0514, "learning_rate": 4.584221748400853e-06, "epoch": 0.41264319558567747, "percentage": 13.76, "elapsed_time": "1:23:26", "remaining_time": "8:43:11"} +{"current_steps": 865, "total_steps": 6252, "loss": 1.0582, "learning_rate": 4.610874200426439e-06, "epoch": 0.4150422839321058, "percentage": 13.84, "elapsed_time": "1:23:46", "remaining_time": "8:41:42"} +{"current_steps": 870, "total_steps": 6252, "loss": 0.9442, "learning_rate": 4.637526652452026e-06, "epoch": 0.4174413722785342, "percentage": 13.92, "elapsed_time": "1:24:06", "remaining_time": "8:40:16"} +{"current_steps": 875, "total_steps": 6252, "loss": 0.9391, "learning_rate": 4.664179104477613e-06, "epoch": 0.4198404606249625, "percentage": 14.0, "elapsed_time": "1:24:24", "remaining_time": "8:38:40"} +{"current_steps": 880, "total_steps": 6252, "loss": 1.016, "learning_rate": 4.690831556503198e-06, "epoch": 0.4222395489713909, "percentage": 14.08, "elapsed_time": "1:24:45", "remaining_time": "8:37:25"} +{"current_steps": 885, "total_steps": 6252, "loss": 1.0797, "learning_rate": 4.717484008528785e-06, "epoch": 0.42463863731781926, "percentage": 14.16, "elapsed_time": "1:25:06", "remaining_time": "8:36:10"} +{"current_steps": 890, "total_steps": 6252, "loss": 1.0632, "learning_rate": 4.744136460554372e-06, "epoch": 0.4270377256642476, "percentage": 14.24, "elapsed_time": "1:25:27", "remaining_time": "8:34:51"} +{"current_steps": 895, "total_steps": 6252, "loss": 1.0721, "learning_rate": 4.770788912579958e-06, "epoch": 0.42943681401067596, "percentage": 14.32, "elapsed_time": "1:25:47", "remaining_time": "8:33:29"} +{"current_steps": 900, "total_steps": 6252, "loss": 1.054, "learning_rate": 4.797441364605544e-06, "epoch": 0.4318359023571043, "percentage": 14.4, "elapsed_time": "1:26:06", "remaining_time": "8:32:04"} +{"current_steps": 900, "total_steps": 6252, "eval_loss": 1.0616637468338013, "epoch": 0.4318359023571043, "percentage": 14.4, "elapsed_time": "1:29:02", "remaining_time": "8:49:28"} +{"current_steps": 905, "total_steps": 6252, "loss": 1.0619, "learning_rate": 4.82409381663113e-06, "epoch": 0.43423499070353266, "percentage": 14.48, "elapsed_time": "1:29:22", "remaining_time": "8:48:03"} +{"current_steps": 910, "total_steps": 6252, "loss": 0.9793, "learning_rate": 4.850746268656717e-06, "epoch": 0.436634079049961, "percentage": 14.56, "elapsed_time": "1:29:42", "remaining_time": "8:46:39"} +{"current_steps": 915, "total_steps": 6252, "loss": 1.031, "learning_rate": 4.877398720682303e-06, "epoch": 0.43903316739638937, "percentage": 14.64, "elapsed_time": "1:30:03", "remaining_time": "8:45:14"} +{"current_steps": 920, "total_steps": 6252, "loss": 1.0687, "learning_rate": 4.90405117270789e-06, "epoch": 0.44143225574281775, "percentage": 14.72, "elapsed_time": "1:30:22", "remaining_time": "8:43:48"} +{"current_steps": 925, "total_steps": 6252, "loss": 1.0311, "learning_rate": 4.930703624733476e-06, "epoch": 0.44383134408924607, "percentage": 14.8, "elapsed_time": "1:30:44", "remaining_time": "8:42:36"} +{"current_steps": 930, "total_steps": 6252, "loss": 0.9699, "learning_rate": 4.957356076759062e-06, "epoch": 0.44623043243567445, "percentage": 14.88, "elapsed_time": "1:31:05", "remaining_time": "8:41:14"} +{"current_steps": 935, "total_steps": 6252, "loss": 1.1171, "learning_rate": 4.984008528784649e-06, "epoch": 0.4486295207821028, "percentage": 14.96, "elapsed_time": "1:31:25", "remaining_time": "8:39:56"} +{"current_steps": 940, "total_steps": 6252, "loss": 0.9621, "learning_rate": 5.010660980810235e-06, "epoch": 0.45102860912853115, "percentage": 15.04, "elapsed_time": "1:31:45", "remaining_time": "8:38:32"} +{"current_steps": 945, "total_steps": 6252, "loss": 1.0444, "learning_rate": 5.037313432835821e-06, "epoch": 0.45342769747495953, "percentage": 15.12, "elapsed_time": "1:32:07", "remaining_time": "8:37:20"} +{"current_steps": 950, "total_steps": 6252, "loss": 0.9907, "learning_rate": 5.063965884861408e-06, "epoch": 0.45582678582138786, "percentage": 15.2, "elapsed_time": "1:32:26", "remaining_time": "8:35:57"} +{"current_steps": 955, "total_steps": 6252, "loss": 1.0314, "learning_rate": 5.090618336886995e-06, "epoch": 0.45822587416781624, "percentage": 15.28, "elapsed_time": "1:32:47", "remaining_time": "8:34:40"} +{"current_steps": 960, "total_steps": 6252, "loss": 1.0468, "learning_rate": 5.11727078891258e-06, "epoch": 0.46062496251424456, "percentage": 15.36, "elapsed_time": "1:33:06", "remaining_time": "8:33:17"} +{"current_steps": 965, "total_steps": 6252, "loss": 1.0273, "learning_rate": 5.1439232409381665e-06, "epoch": 0.46302405086067294, "percentage": 15.44, "elapsed_time": "1:33:28", "remaining_time": "8:32:07"} +{"current_steps": 970, "total_steps": 6252, "loss": 1.0078, "learning_rate": 5.170575692963753e-06, "epoch": 0.4654231392071013, "percentage": 15.52, "elapsed_time": "1:33:49", "remaining_time": "8:30:51"} +{"current_steps": 975, "total_steps": 6252, "loss": 0.9977, "learning_rate": 5.197228144989339e-06, "epoch": 0.46782222755352965, "percentage": 15.6, "elapsed_time": "1:34:08", "remaining_time": "8:29:31"} +{"current_steps": 980, "total_steps": 6252, "loss": 0.9653, "learning_rate": 5.2238805970149255e-06, "epoch": 0.470221315899958, "percentage": 15.67, "elapsed_time": "1:34:28", "remaining_time": "8:28:14"} +{"current_steps": 985, "total_steps": 6252, "loss": 1.0362, "learning_rate": 5.250533049040513e-06, "epoch": 0.47262040424638635, "percentage": 15.75, "elapsed_time": "1:34:49", "remaining_time": "8:27:00"} +{"current_steps": 990, "total_steps": 6252, "loss": 1.0136, "learning_rate": 5.277185501066099e-06, "epoch": 0.47501949259281473, "percentage": 15.83, "elapsed_time": "1:35:09", "remaining_time": "8:25:47"} +{"current_steps": 995, "total_steps": 6252, "loss": 0.9821, "learning_rate": 5.303837953091685e-06, "epoch": 0.4774185809392431, "percentage": 15.91, "elapsed_time": "1:35:29", "remaining_time": "8:24:32"} +{"current_steps": 1000, "total_steps": 6252, "loss": 1.0744, "learning_rate": 5.3304904051172716e-06, "epoch": 0.47981766928567143, "percentage": 15.99, "elapsed_time": "1:35:50", "remaining_time": "8:23:22"} +{"current_steps": 1000, "total_steps": 6252, "eval_loss": 1.048653483390808, "epoch": 0.47981766928567143, "percentage": 15.99, "elapsed_time": "1:38:46", "remaining_time": "8:38:44"} +{"current_steps": 1005, "total_steps": 6252, "loss": 1.0825, "learning_rate": 5.357142857142857e-06, "epoch": 0.4822167576320998, "percentage": 16.07, "elapsed_time": "1:39:42", "remaining_time": "8:40:32"} +{"current_steps": 1010, "total_steps": 6252, "loss": 1.0803, "learning_rate": 5.383795309168443e-06, "epoch": 0.48461584597852814, "percentage": 16.15, "elapsed_time": "1:40:01", "remaining_time": "8:39:08"} +{"current_steps": 1015, "total_steps": 6252, "loss": 0.9915, "learning_rate": 5.41044776119403e-06, "epoch": 0.4870149343249565, "percentage": 16.23, "elapsed_time": "1:40:20", "remaining_time": "8:37:41"} +{"current_steps": 1020, "total_steps": 6252, "loss": 1.0955, "learning_rate": 5.437100213219617e-06, "epoch": 0.4894140226713849, "percentage": 16.31, "elapsed_time": "1:40:41", "remaining_time": "8:36:28"} +{"current_steps": 1025, "total_steps": 6252, "loss": 0.9685, "learning_rate": 5.463752665245203e-06, "epoch": 0.4918131110178132, "percentage": 16.39, "elapsed_time": "1:41:02", "remaining_time": "8:35:14"} +{"current_steps": 1030, "total_steps": 6252, "loss": 1.0203, "learning_rate": 5.4904051172707895e-06, "epoch": 0.4942121993642416, "percentage": 16.47, "elapsed_time": "1:41:23", "remaining_time": "8:34:01"} +{"current_steps": 1035, "total_steps": 6252, "loss": 1.1175, "learning_rate": 5.517057569296376e-06, "epoch": 0.4966112877106699, "percentage": 16.55, "elapsed_time": "1:41:43", "remaining_time": "8:32:44"} +{"current_steps": 1040, "total_steps": 6252, "loss": 1.0268, "learning_rate": 5.543710021321962e-06, "epoch": 0.4990103760570983, "percentage": 16.63, "elapsed_time": "1:42:03", "remaining_time": "8:31:27"} +{"current_steps": 1045, "total_steps": 6252, "loss": 0.9042, "learning_rate": 5.570362473347548e-06, "epoch": 0.5014094644035266, "percentage": 16.71, "elapsed_time": "1:42:21", "remaining_time": "8:30:03"} +{"current_steps": 1050, "total_steps": 6252, "loss": 1.0338, "learning_rate": 5.597014925373134e-06, "epoch": 0.5038085527499551, "percentage": 16.79, "elapsed_time": "1:42:43", "remaining_time": "8:28:58"} +{"current_steps": 1055, "total_steps": 6252, "loss": 1.0724, "learning_rate": 5.623667377398722e-06, "epoch": 0.5062076410963834, "percentage": 16.87, "elapsed_time": "1:43:06", "remaining_time": "8:27:54"} +{"current_steps": 1060, "total_steps": 6252, "loss": 1.1108, "learning_rate": 5.650319829424308e-06, "epoch": 0.5086067294428117, "percentage": 16.95, "elapsed_time": "1:43:25", "remaining_time": "8:26:37"} +{"current_steps": 1065, "total_steps": 6252, "loss": 1.0471, "learning_rate": 5.676972281449894e-06, "epoch": 0.51100581778924, "percentage": 17.03, "elapsed_time": "1:43:46", "remaining_time": "8:25:25"} +{"current_steps": 1070, "total_steps": 6252, "loss": 1.0467, "learning_rate": 5.70362473347548e-06, "epoch": 0.5134049061356685, "percentage": 17.11, "elapsed_time": "1:44:07", "remaining_time": "8:24:18"} +{"current_steps": 1075, "total_steps": 6252, "loss": 1.0706, "learning_rate": 5.730277185501066e-06, "epoch": 0.5158039944820968, "percentage": 17.19, "elapsed_time": "1:44:27", "remaining_time": "8:23:04"} +{"current_steps": 1080, "total_steps": 6252, "loss": 1.0565, "learning_rate": 5.756929637526653e-06, "epoch": 0.5182030828285251, "percentage": 17.27, "elapsed_time": "1:44:49", "remaining_time": "8:21:58"} +{"current_steps": 1085, "total_steps": 6252, "loss": 0.9996, "learning_rate": 5.783582089552239e-06, "epoch": 0.5206021711749536, "percentage": 17.35, "elapsed_time": "1:45:10", "remaining_time": "8:20:50"} +{"current_steps": 1090, "total_steps": 6252, "loss": 1.0384, "learning_rate": 5.810234541577826e-06, "epoch": 0.5230012595213819, "percentage": 17.43, "elapsed_time": "1:45:30", "remaining_time": "8:19:37"} +{"current_steps": 1095, "total_steps": 6252, "loss": 1.0247, "learning_rate": 5.836886993603412e-06, "epoch": 0.5254003478678102, "percentage": 17.51, "elapsed_time": "1:45:50", "remaining_time": "8:18:28"} +{"current_steps": 1100, "total_steps": 6252, "loss": 0.9977, "learning_rate": 5.863539445628999e-06, "epoch": 0.5277994362142386, "percentage": 17.59, "elapsed_time": "1:46:12", "remaining_time": "8:17:25"} +{"current_steps": 1100, "total_steps": 6252, "eval_loss": 1.0383222103118896, "epoch": 0.5277994362142386, "percentage": 17.59, "elapsed_time": "1:49:07", "remaining_time": "8:31:08"} +{"current_steps": 1105, "total_steps": 6252, "loss": 1.0028, "learning_rate": 5.890191897654585e-06, "epoch": 0.530198524560667, "percentage": 17.67, "elapsed_time": "1:49:27", "remaining_time": "8:29:52"} +{"current_steps": 1110, "total_steps": 6252, "loss": 1.0242, "learning_rate": 5.9168443496801705e-06, "epoch": 0.5325976129070953, "percentage": 17.75, "elapsed_time": "1:49:49", "remaining_time": "8:28:45"} +{"current_steps": 1115, "total_steps": 6252, "loss": 1.0978, "learning_rate": 5.943496801705757e-06, "epoch": 0.5349967012535236, "percentage": 17.83, "elapsed_time": "1:50:10", "remaining_time": "8:27:37"} +{"current_steps": 1120, "total_steps": 6252, "loss": 0.9951, "learning_rate": 5.970149253731343e-06, "epoch": 0.537395789599952, "percentage": 17.91, "elapsed_time": "1:50:30", "remaining_time": "8:26:20"} +{"current_steps": 1125, "total_steps": 6252, "loss": 1.0309, "learning_rate": 5.99680170575693e-06, "epoch": 0.5397948779463804, "percentage": 17.99, "elapsed_time": "1:50:52", "remaining_time": "8:25:15"} +{"current_steps": 1130, "total_steps": 6252, "loss": 1.0587, "learning_rate": 6.023454157782517e-06, "epoch": 0.5421939662928087, "percentage": 18.07, "elapsed_time": "1:51:11", "remaining_time": "8:24:00"} +{"current_steps": 1135, "total_steps": 6252, "loss": 1.0184, "learning_rate": 6.050106609808103e-06, "epoch": 0.5445930546392371, "percentage": 18.15, "elapsed_time": "1:51:30", "remaining_time": "8:22:44"} +{"current_steps": 1140, "total_steps": 6252, "loss": 1.0146, "learning_rate": 6.076759061833689e-06, "epoch": 0.5469921429856655, "percentage": 18.23, "elapsed_time": "1:51:51", "remaining_time": "8:21:35"} +{"current_steps": 1145, "total_steps": 6252, "loss": 1.1346, "learning_rate": 6.1034115138592756e-06, "epoch": 0.5493912313320938, "percentage": 18.31, "elapsed_time": "1:52:11", "remaining_time": "8:20:23"} +{"current_steps": 1150, "total_steps": 6252, "loss": 0.9866, "learning_rate": 6.130063965884862e-06, "epoch": 0.5517903196785222, "percentage": 18.39, "elapsed_time": "1:52:32", "remaining_time": "8:19:18"} +{"current_steps": 1155, "total_steps": 6252, "loss": 1.0329, "learning_rate": 6.156716417910447e-06, "epoch": 0.5541894080249505, "percentage": 18.47, "elapsed_time": "1:52:52", "remaining_time": "8:18:04"} +{"current_steps": 1160, "total_steps": 6252, "loss": 1.0053, "learning_rate": 6.183368869936035e-06, "epoch": 0.5565884963713789, "percentage": 18.55, "elapsed_time": "1:53:12", "remaining_time": "8:16:57"} +{"current_steps": 1165, "total_steps": 6252, "loss": 1.0875, "learning_rate": 6.210021321961621e-06, "epoch": 0.5589875847178072, "percentage": 18.63, "elapsed_time": "1:53:32", "remaining_time": "8:15:47"} +{"current_steps": 1170, "total_steps": 6252, "loss": 1.007, "learning_rate": 6.236673773987207e-06, "epoch": 0.5613866730642356, "percentage": 18.71, "elapsed_time": "1:53:53", "remaining_time": "8:14:39"} +{"current_steps": 1175, "total_steps": 6252, "loss": 0.982, "learning_rate": 6.2633262260127935e-06, "epoch": 0.5637857614106639, "percentage": 18.79, "elapsed_time": "1:54:13", "remaining_time": "8:13:34"} +{"current_steps": 1180, "total_steps": 6252, "loss": 0.9737, "learning_rate": 6.28997867803838e-06, "epoch": 0.5661848497570923, "percentage": 18.87, "elapsed_time": "1:54:34", "remaining_time": "8:12:30"} +{"current_steps": 1185, "total_steps": 6252, "loss": 1.0252, "learning_rate": 6.316631130063966e-06, "epoch": 0.5685839381035207, "percentage": 18.95, "elapsed_time": "1:54:54", "remaining_time": "8:11:21"} +{"current_steps": 1190, "total_steps": 6252, "loss": 1.1008, "learning_rate": 6.343283582089553e-06, "epoch": 0.570983026449949, "percentage": 19.03, "elapsed_time": "1:55:15", "remaining_time": "8:10:16"} +{"current_steps": 1195, "total_steps": 6252, "loss": 1.1048, "learning_rate": 6.3699360341151396e-06, "epoch": 0.5733821147963774, "percentage": 19.11, "elapsed_time": "1:55:35", "remaining_time": "8:09:10"} +{"current_steps": 1200, "total_steps": 6252, "loss": 0.9778, "learning_rate": 6.396588486140726e-06, "epoch": 0.5757812031428058, "percentage": 19.19, "elapsed_time": "1:55:58", "remaining_time": "8:08:15"} +{"current_steps": 1200, "total_steps": 6252, "eval_loss": 1.0289998054504395, "epoch": 0.5757812031428058, "percentage": 19.19, "elapsed_time": "1:58:54", "remaining_time": "8:20:34"} +{"current_steps": 1205, "total_steps": 6252, "loss": 0.9643, "learning_rate": 6.423240938166312e-06, "epoch": 0.5781802914892341, "percentage": 19.27, "elapsed_time": "1:59:48", "remaining_time": "8:21:48"} +{"current_steps": 1210, "total_steps": 6252, "loss": 0.9933, "learning_rate": 6.449893390191898e-06, "epoch": 0.5805793798356624, "percentage": 19.35, "elapsed_time": "2:00:08", "remaining_time": "8:20:36"} +{"current_steps": 1215, "total_steps": 6252, "loss": 1.0294, "learning_rate": 6.476545842217484e-06, "epoch": 0.5829784681820908, "percentage": 19.43, "elapsed_time": "2:00:29", "remaining_time": "8:19:30"} +{"current_steps": 1220, "total_steps": 6252, "loss": 1.0155, "learning_rate": 6.50319829424307e-06, "epoch": 0.5853775565285192, "percentage": 19.51, "elapsed_time": "2:00:50", "remaining_time": "8:18:24"} +{"current_steps": 1225, "total_steps": 6252, "loss": 1.0275, "learning_rate": 6.5298507462686575e-06, "epoch": 0.5877766448749475, "percentage": 19.59, "elapsed_time": "2:01:10", "remaining_time": "8:17:15"} +{"current_steps": 1230, "total_steps": 6252, "loss": 1.0395, "learning_rate": 6.556503198294244e-06, "epoch": 0.5901757332213758, "percentage": 19.67, "elapsed_time": "2:01:29", "remaining_time": "8:16:01"} +{"current_steps": 1235, "total_steps": 6252, "loss": 1.0462, "learning_rate": 6.58315565031983e-06, "epoch": 0.5925748215678043, "percentage": 19.75, "elapsed_time": "2:01:48", "remaining_time": "8:14:48"} +{"current_steps": 1240, "total_steps": 6252, "loss": 1.0042, "learning_rate": 6.609808102345416e-06, "epoch": 0.5949739099142326, "percentage": 19.83, "elapsed_time": "2:02:08", "remaining_time": "8:13:43"} +{"current_steps": 1245, "total_steps": 6252, "loss": 0.9548, "learning_rate": 6.636460554371003e-06, "epoch": 0.5973729982606609, "percentage": 19.91, "elapsed_time": "2:02:28", "remaining_time": "8:12:32"} +{"current_steps": 1250, "total_steps": 6252, "loss": 1.0012, "learning_rate": 6.663113006396589e-06, "epoch": 0.5997720866070894, "percentage": 19.99, "elapsed_time": "2:02:48", "remaining_time": "8:11:24"} +{"current_steps": 1255, "total_steps": 6252, "loss": 0.8987, "learning_rate": 6.689765458422175e-06, "epoch": 0.6021711749535177, "percentage": 20.07, "elapsed_time": "2:03:07", "remaining_time": "8:10:16"} +{"current_steps": 1260, "total_steps": 6252, "loss": 1.0123, "learning_rate": 6.7164179104477625e-06, "epoch": 0.604570263299946, "percentage": 20.15, "elapsed_time": "2:03:29", "remaining_time": "8:09:14"} +{"current_steps": 1265, "total_steps": 6252, "loss": 0.9884, "learning_rate": 6.743070362473349e-06, "epoch": 0.6069693516463743, "percentage": 20.23, "elapsed_time": "2:03:50", "remaining_time": "8:08:11"} +{"current_steps": 1270, "total_steps": 6252, "loss": 1.1241, "learning_rate": 6.769722814498934e-06, "epoch": 0.6093684399928028, "percentage": 20.31, "elapsed_time": "2:04:11", "remaining_time": "8:07:10"} +{"current_steps": 1275, "total_steps": 6252, "loss": 1.0129, "learning_rate": 6.796375266524521e-06, "epoch": 0.6117675283392311, "percentage": 20.39, "elapsed_time": "2:04:32", "remaining_time": "8:06:09"} +{"current_steps": 1280, "total_steps": 6252, "loss": 1.0729, "learning_rate": 6.823027718550107e-06, "epoch": 0.6141666166856594, "percentage": 20.47, "elapsed_time": "2:04:52", "remaining_time": "8:05:02"} +{"current_steps": 1285, "total_steps": 6252, "loss": 1.0007, "learning_rate": 6.849680170575693e-06, "epoch": 0.6165657050320879, "percentage": 20.55, "elapsed_time": "2:05:15", "remaining_time": "8:04:09"} +{"current_steps": 1290, "total_steps": 6252, "loss": 0.9614, "learning_rate": 6.8763326226012796e-06, "epoch": 0.6189647933785162, "percentage": 20.63, "elapsed_time": "2:05:35", "remaining_time": "8:03:06"} +{"current_steps": 1295, "total_steps": 6252, "loss": 0.9357, "learning_rate": 6.902985074626867e-06, "epoch": 0.6213638817249445, "percentage": 20.71, "elapsed_time": "2:05:55", "remaining_time": "8:02:02"} +{"current_steps": 1300, "total_steps": 6252, "loss": 1.0187, "learning_rate": 6.929637526652453e-06, "epoch": 0.6237629700713728, "percentage": 20.79, "elapsed_time": "2:06:16", "remaining_time": "8:00:59"} +{"current_steps": 1300, "total_steps": 6252, "eval_loss": 1.0210597515106201, "epoch": 0.6237629700713728, "percentage": 20.79, "elapsed_time": "2:09:11", "remaining_time": "8:12:09"} +{"current_steps": 1305, "total_steps": 6252, "loss": 0.9008, "learning_rate": 6.956289978678039e-06, "epoch": 0.6261620584178013, "percentage": 20.87, "elapsed_time": "2:09:32", "remaining_time": "8:11:04"} +{"current_steps": 1310, "total_steps": 6252, "loss": 1.0302, "learning_rate": 6.982942430703626e-06, "epoch": 0.6285611467642296, "percentage": 20.95, "elapsed_time": "2:09:53", "remaining_time": "8:10:01"} +{"current_steps": 1315, "total_steps": 6252, "loss": 0.9546, "learning_rate": 7.009594882729211e-06, "epoch": 0.6309602351106579, "percentage": 21.03, "elapsed_time": "2:10:15", "remaining_time": "8:09:02"} +{"current_steps": 1320, "total_steps": 6252, "loss": 1.0431, "learning_rate": 7.0362473347547975e-06, "epoch": 0.6333593234570863, "percentage": 21.11, "elapsed_time": "2:10:36", "remaining_time": "8:08:01"} +{"current_steps": 1325, "total_steps": 6252, "loss": 0.9423, "learning_rate": 7.062899786780384e-06, "epoch": 0.6357584118035147, "percentage": 21.19, "elapsed_time": "2:10:57", "remaining_time": "8:06:58"} +{"current_steps": 1330, "total_steps": 6252, "loss": 1.0365, "learning_rate": 7.089552238805971e-06, "epoch": 0.638157500149943, "percentage": 21.27, "elapsed_time": "2:11:16", "remaining_time": "8:05:48"} +{"current_steps": 1335, "total_steps": 6252, "loss": 0.973, "learning_rate": 7.116204690831557e-06, "epoch": 0.6405565884963714, "percentage": 21.35, "elapsed_time": "2:11:35", "remaining_time": "8:04:39"} +{"current_steps": 1340, "total_steps": 6252, "loss": 0.8795, "learning_rate": 7.1428571428571436e-06, "epoch": 0.6429556768427998, "percentage": 21.43, "elapsed_time": "2:11:54", "remaining_time": "8:03:30"} +{"current_steps": 1345, "total_steps": 6252, "loss": 0.9596, "learning_rate": 7.16950959488273e-06, "epoch": 0.6453547651892281, "percentage": 21.51, "elapsed_time": "2:12:13", "remaining_time": "8:02:25"} +{"current_steps": 1350, "total_steps": 6252, "loss": 0.9984, "learning_rate": 7.196162046908316e-06, "epoch": 0.6477538535356564, "percentage": 21.59, "elapsed_time": "2:12:32", "remaining_time": "8:01:18"} +{"current_steps": 1355, "total_steps": 6252, "loss": 0.9752, "learning_rate": 7.2228144989339025e-06, "epoch": 0.6501529418820848, "percentage": 21.67, "elapsed_time": "2:12:52", "remaining_time": "8:00:11"} +{"current_steps": 1360, "total_steps": 6252, "loss": 0.9701, "learning_rate": 7.249466950959488e-06, "epoch": 0.6525520302285132, "percentage": 21.75, "elapsed_time": "2:13:12", "remaining_time": "7:59:08"} +{"current_steps": 1365, "total_steps": 6252, "loss": 1.0054, "learning_rate": 7.276119402985076e-06, "epoch": 0.6549511185749415, "percentage": 21.83, "elapsed_time": "2:13:35", "remaining_time": "7:58:15"} +{"current_steps": 1370, "total_steps": 6252, "loss": 0.9919, "learning_rate": 7.302771855010662e-06, "epoch": 0.6573502069213699, "percentage": 21.91, "elapsed_time": "2:13:57", "remaining_time": "7:57:21"} +{"current_steps": 1375, "total_steps": 6252, "loss": 0.9389, "learning_rate": 7.329424307036248e-06, "epoch": 0.6597492952677982, "percentage": 21.99, "elapsed_time": "2:14:18", "remaining_time": "7:56:23"} +{"current_steps": 1380, "total_steps": 6252, "loss": 0.9607, "learning_rate": 7.356076759061834e-06, "epoch": 0.6621483836142266, "percentage": 22.07, "elapsed_time": "2:14:38", "remaining_time": "7:55:21"} +{"current_steps": 1385, "total_steps": 6252, "loss": 1.084, "learning_rate": 7.38272921108742e-06, "epoch": 0.664547471960655, "percentage": 22.15, "elapsed_time": "2:14:59", "remaining_time": "7:54:21"} +{"current_steps": 1390, "total_steps": 6252, "loss": 0.9887, "learning_rate": 7.409381663113007e-06, "epoch": 0.6669465603070833, "percentage": 22.23, "elapsed_time": "2:15:21", "remaining_time": "7:53:27"} +{"current_steps": 1395, "total_steps": 6252, "loss": 0.9656, "learning_rate": 7.436034115138593e-06, "epoch": 0.6693456486535116, "percentage": 22.31, "elapsed_time": "2:15:41", "remaining_time": "7:52:25"} +{"current_steps": 1400, "total_steps": 6252, "loss": 1.085, "learning_rate": 7.46268656716418e-06, "epoch": 0.67174473699994, "percentage": 22.39, "elapsed_time": "2:16:01", "remaining_time": "7:51:25"} +{"current_steps": 1400, "total_steps": 6252, "eval_loss": 1.0130821466445923, "epoch": 0.67174473699994, "percentage": 22.39, "elapsed_time": "2:19:00", "remaining_time": "8:01:44"} +{"current_steps": 1405, "total_steps": 6252, "loss": 1.0731, "learning_rate": 7.4893390191897665e-06, "epoch": 0.6741438253463684, "percentage": 22.47, "elapsed_time": "2:19:53", "remaining_time": "8:02:36"} +{"current_steps": 1410, "total_steps": 6252, "loss": 1.0096, "learning_rate": 7.515991471215353e-06, "epoch": 0.6765429136927967, "percentage": 22.55, "elapsed_time": "2:20:15", "remaining_time": "8:01:38"} +{"current_steps": 1415, "total_steps": 6252, "loss": 0.9554, "learning_rate": 7.542643923240939e-06, "epoch": 0.6789420020392251, "percentage": 22.63, "elapsed_time": "2:20:34", "remaining_time": "8:00:33"} +{"current_steps": 1420, "total_steps": 6252, "loss": 1.0688, "learning_rate": 7.569296375266525e-06, "epoch": 0.6813410903856535, "percentage": 22.71, "elapsed_time": "2:20:54", "remaining_time": "7:59:28"} +{"current_steps": 1425, "total_steps": 6252, "loss": 0.9863, "learning_rate": 7.595948827292111e-06, "epoch": 0.6837401787320818, "percentage": 22.79, "elapsed_time": "2:21:15", "remaining_time": "7:58:29"} +{"current_steps": 1430, "total_steps": 6252, "loss": 0.9846, "learning_rate": 7.622601279317697e-06, "epoch": 0.6861392670785101, "percentage": 22.87, "elapsed_time": "2:21:37", "remaining_time": "7:57:33"} +{"current_steps": 1435, "total_steps": 6252, "loss": 0.9898, "learning_rate": 7.649253731343284e-06, "epoch": 0.6885383554249386, "percentage": 22.95, "elapsed_time": "2:21:56", "remaining_time": "7:56:29"} +{"current_steps": 1440, "total_steps": 6252, "loss": 1.0163, "learning_rate": 7.67590618336887e-06, "epoch": 0.6909374437713669, "percentage": 23.03, "elapsed_time": "2:22:16", "remaining_time": "7:55:25"} +{"current_steps": 1445, "total_steps": 6252, "loss": 1.0098, "learning_rate": 7.702558635394457e-06, "epoch": 0.6933365321177952, "percentage": 23.11, "elapsed_time": "2:22:36", "remaining_time": "7:54:23"} +{"current_steps": 1450, "total_steps": 6252, "loss": 0.9562, "learning_rate": 7.729211087420043e-06, "epoch": 0.6957356204642235, "percentage": 23.19, "elapsed_time": "2:22:56", "remaining_time": "7:53:23"} +{"current_steps": 1455, "total_steps": 6252, "loss": 0.9638, "learning_rate": 7.75586353944563e-06, "epoch": 0.698134708810652, "percentage": 23.27, "elapsed_time": "2:23:17", "remaining_time": "7:52:24"} +{"current_steps": 1460, "total_steps": 6252, "loss": 0.9566, "learning_rate": 7.782515991471216e-06, "epoch": 0.7005337971570803, "percentage": 23.35, "elapsed_time": "2:23:38", "remaining_time": "7:51:28"} +{"current_steps": 1465, "total_steps": 6252, "loss": 1.0047, "learning_rate": 7.809168443496802e-06, "epoch": 0.7029328855035086, "percentage": 23.43, "elapsed_time": "2:24:00", "remaining_time": "7:50:34"} +{"current_steps": 1470, "total_steps": 6252, "loss": 0.9726, "learning_rate": 7.835820895522389e-06, "epoch": 0.7053319738499371, "percentage": 23.51, "elapsed_time": "2:24:25", "remaining_time": "7:49:50"} +{"current_steps": 1475, "total_steps": 6252, "loss": 0.951, "learning_rate": 7.862473347547975e-06, "epoch": 0.7077310621963654, "percentage": 23.59, "elapsed_time": "2:24:46", "remaining_time": "7:48:52"} +{"current_steps": 1480, "total_steps": 6252, "loss": 0.9984, "learning_rate": 7.889125799573561e-06, "epoch": 0.7101301505427937, "percentage": 23.67, "elapsed_time": "2:25:07", "remaining_time": "7:47:56"} +{"current_steps": 1485, "total_steps": 6252, "loss": 0.9609, "learning_rate": 7.915778251599148e-06, "epoch": 0.7125292388892221, "percentage": 23.75, "elapsed_time": "2:25:28", "remaining_time": "7:47:00"} +{"current_steps": 1490, "total_steps": 6252, "loss": 0.915, "learning_rate": 7.942430703624734e-06, "epoch": 0.7149283272356505, "percentage": 23.83, "elapsed_time": "2:25:50", "remaining_time": "7:46:06"} +{"current_steps": 1495, "total_steps": 6252, "loss": 1.0487, "learning_rate": 7.96908315565032e-06, "epoch": 0.7173274155820788, "percentage": 23.91, "elapsed_time": "2:26:12", "remaining_time": "7:45:12"} +{"current_steps": 1500, "total_steps": 6252, "loss": 0.958, "learning_rate": 7.995735607675907e-06, "epoch": 0.7197265039285071, "percentage": 23.99, "elapsed_time": "2:26:31", "remaining_time": "7:44:12"} +{"current_steps": 1500, "total_steps": 6252, "eval_loss": 1.0071519613265991, "epoch": 0.7197265039285071, "percentage": 23.99, "elapsed_time": "2:29:27", "remaining_time": "7:53:29"} +{"current_steps": 1505, "total_steps": 6252, "loss": 1.0321, "learning_rate": 8.022388059701493e-06, "epoch": 0.7221255922749356, "percentage": 24.07, "elapsed_time": "2:29:47", "remaining_time": "7:52:29"} +{"current_steps": 1510, "total_steps": 6252, "loss": 0.9943, "learning_rate": 8.049040511727079e-06, "epoch": 0.7245246806213639, "percentage": 24.15, "elapsed_time": "2:30:09", "remaining_time": "7:51:33"} +{"current_steps": 1515, "total_steps": 6252, "loss": 0.9148, "learning_rate": 8.075692963752665e-06, "epoch": 0.7269237689677922, "percentage": 24.23, "elapsed_time": "2:30:32", "remaining_time": "7:50:42"} +{"current_steps": 1520, "total_steps": 6252, "loss": 0.9026, "learning_rate": 8.102345415778252e-06, "epoch": 0.7293228573142206, "percentage": 24.31, "elapsed_time": "2:30:53", "remaining_time": "7:49:43"} +{"current_steps": 1525, "total_steps": 6252, "loss": 1.023, "learning_rate": 8.128997867803838e-06, "epoch": 0.731721945660649, "percentage": 24.39, "elapsed_time": "2:31:13", "remaining_time": "7:48:43"} +{"current_steps": 1530, "total_steps": 6252, "loss": 1.0484, "learning_rate": 8.155650319829424e-06, "epoch": 0.7341210340070773, "percentage": 24.47, "elapsed_time": "2:31:32", "remaining_time": "7:47:43"} +{"current_steps": 1535, "total_steps": 6252, "loss": 1.0762, "learning_rate": 8.182302771855012e-06, "epoch": 0.7365201223535056, "percentage": 24.55, "elapsed_time": "2:31:51", "remaining_time": "7:46:40"} +{"current_steps": 1540, "total_steps": 6252, "loss": 1.0513, "learning_rate": 8.208955223880599e-06, "epoch": 0.738919210699934, "percentage": 24.63, "elapsed_time": "2:32:11", "remaining_time": "7:45:41"} +{"current_steps": 1545, "total_steps": 6252, "loss": 0.9738, "learning_rate": 8.235607675906185e-06, "epoch": 0.7413182990463624, "percentage": 24.71, "elapsed_time": "2:32:33", "remaining_time": "7:44:48"} +{"current_steps": 1550, "total_steps": 6252, "loss": 1.0299, "learning_rate": 8.26226012793177e-06, "epoch": 0.7437173873927907, "percentage": 24.79, "elapsed_time": "2:32:52", "remaining_time": "7:43:46"} +{"current_steps": 1555, "total_steps": 6252, "loss": 0.9971, "learning_rate": 8.288912579957356e-06, "epoch": 0.7461164757392191, "percentage": 24.87, "elapsed_time": "2:33:13", "remaining_time": "7:42:50"} +{"current_steps": 1560, "total_steps": 6252, "loss": 0.9628, "learning_rate": 8.315565031982942e-06, "epoch": 0.7485155640856475, "percentage": 24.95, "elapsed_time": "2:33:32", "remaining_time": "7:41:47"} +{"current_steps": 1565, "total_steps": 6252, "loss": 1.0038, "learning_rate": 8.342217484008529e-06, "epoch": 0.7509146524320758, "percentage": 25.03, "elapsed_time": "2:33:53", "remaining_time": "7:40:52"} +{"current_steps": 1570, "total_steps": 6252, "loss": 0.9872, "learning_rate": 8.368869936034117e-06, "epoch": 0.7533137407785042, "percentage": 25.11, "elapsed_time": "2:34:13", "remaining_time": "7:39:54"} +{"current_steps": 1575, "total_steps": 6252, "loss": 0.9728, "learning_rate": 8.395522388059703e-06, "epoch": 0.7557128291249325, "percentage": 25.19, "elapsed_time": "2:34:33", "remaining_time": "7:38:57"} +{"current_steps": 1580, "total_steps": 6252, "loss": 0.9373, "learning_rate": 8.42217484008529e-06, "epoch": 0.7581119174713609, "percentage": 25.27, "elapsed_time": "2:34:52", "remaining_time": "7:37:58"} +{"current_steps": 1585, "total_steps": 6252, "loss": 0.9553, "learning_rate": 8.448827292110876e-06, "epoch": 0.7605110058177892, "percentage": 25.35, "elapsed_time": "2:35:13", "remaining_time": "7:37:03"} +{"current_steps": 1590, "total_steps": 6252, "loss": 0.8991, "learning_rate": 8.475479744136462e-06, "epoch": 0.7629100941642176, "percentage": 25.43, "elapsed_time": "2:35:35", "remaining_time": "7:36:11"} +{"current_steps": 1595, "total_steps": 6252, "loss": 1.0188, "learning_rate": 8.502132196162046e-06, "epoch": 0.765309182510646, "percentage": 25.51, "elapsed_time": "2:35:54", "remaining_time": "7:35:13"} +{"current_steps": 1600, "total_steps": 6252, "loss": 1.0482, "learning_rate": 8.528784648187633e-06, "epoch": 0.7677082708570743, "percentage": 25.59, "elapsed_time": "2:36:14", "remaining_time": "7:34:14"} +{"current_steps": 1600, "total_steps": 6252, "eval_loss": 1.0007458925247192, "epoch": 0.7677082708570743, "percentage": 25.59, "elapsed_time": "2:39:09", "remaining_time": "7:42:45"} +{"current_steps": 1605, "total_steps": 6252, "loss": 0.9521, "learning_rate": 8.55543710021322e-06, "epoch": 0.7701073592035027, "percentage": 25.67, "elapsed_time": "2:40:06", "remaining_time": "7:43:33"} +{"current_steps": 1610, "total_steps": 6252, "loss": 0.9527, "learning_rate": 8.582089552238807e-06, "epoch": 0.772506447549931, "percentage": 25.75, "elapsed_time": "2:40:28", "remaining_time": "7:42:39"} +{"current_steps": 1615, "total_steps": 6252, "loss": 1.0012, "learning_rate": 8.608742004264393e-06, "epoch": 0.7749055358963594, "percentage": 25.83, "elapsed_time": "2:40:49", "remaining_time": "7:41:46"} +{"current_steps": 1620, "total_steps": 6252, "loss": 0.9729, "learning_rate": 8.63539445628998e-06, "epoch": 0.7773046242427878, "percentage": 25.91, "elapsed_time": "2:41:10", "remaining_time": "7:40:49"} +{"current_steps": 1625, "total_steps": 6252, "loss": 0.9014, "learning_rate": 8.662046908315566e-06, "epoch": 0.7797037125892161, "percentage": 25.99, "elapsed_time": "2:41:30", "remaining_time": "7:39:51"} +{"current_steps": 1630, "total_steps": 6252, "loss": 1.0124, "learning_rate": 8.688699360341152e-06, "epoch": 0.7821028009356444, "percentage": 26.07, "elapsed_time": "2:41:49", "remaining_time": "7:38:50"} +{"current_steps": 1635, "total_steps": 6252, "loss": 0.9066, "learning_rate": 8.715351812366739e-06, "epoch": 0.7845018892820728, "percentage": 26.15, "elapsed_time": "2:42:09", "remaining_time": "7:37:53"} +{"current_steps": 1640, "total_steps": 6252, "loss": 0.9101, "learning_rate": 8.742004264392325e-06, "epoch": 0.7869009776285012, "percentage": 26.23, "elapsed_time": "2:42:29", "remaining_time": "7:36:56"} +{"current_steps": 1645, "total_steps": 6252, "loss": 0.9386, "learning_rate": 8.768656716417911e-06, "epoch": 0.7893000659749295, "percentage": 26.31, "elapsed_time": "2:42:51", "remaining_time": "7:36:05"} +{"current_steps": 1650, "total_steps": 6252, "loss": 0.9139, "learning_rate": 8.795309168443498e-06, "epoch": 0.7916991543213578, "percentage": 26.39, "elapsed_time": "2:43:12", "remaining_time": "7:35:13"} +{"current_steps": 1655, "total_steps": 6252, "loss": 0.9178, "learning_rate": 8.821961620469084e-06, "epoch": 0.7940982426677863, "percentage": 26.47, "elapsed_time": "2:43:33", "remaining_time": "7:34:19"} +{"current_steps": 1660, "total_steps": 6252, "loss": 0.9809, "learning_rate": 8.84861407249467e-06, "epoch": 0.7964973310142146, "percentage": 26.55, "elapsed_time": "2:43:56", "remaining_time": "7:33:30"} +{"current_steps": 1665, "total_steps": 6252, "loss": 1.0115, "learning_rate": 8.875266524520257e-06, "epoch": 0.7988964193606429, "percentage": 26.63, "elapsed_time": "2:44:14", "remaining_time": "7:32:29"} +{"current_steps": 1670, "total_steps": 6252, "loss": 0.9548, "learning_rate": 8.901918976545843e-06, "epoch": 0.8012955077070714, "percentage": 26.71, "elapsed_time": "2:44:36", "remaining_time": "7:31:39"} +{"current_steps": 1675, "total_steps": 6252, "loss": 0.9575, "learning_rate": 8.92857142857143e-06, "epoch": 0.8036945960534997, "percentage": 26.79, "elapsed_time": "2:44:58", "remaining_time": "7:30:47"} +{"current_steps": 1680, "total_steps": 6252, "loss": 1.0284, "learning_rate": 8.955223880597016e-06, "epoch": 0.806093684399928, "percentage": 26.87, "elapsed_time": "2:45:19", "remaining_time": "7:29:55"} +{"current_steps": 1685, "total_steps": 6252, "loss": 0.9645, "learning_rate": 8.981876332622602e-06, "epoch": 0.8084927727463563, "percentage": 26.95, "elapsed_time": "2:45:40", "remaining_time": "7:29:01"} +{"current_steps": 1690, "total_steps": 6252, "loss": 0.9457, "learning_rate": 9.008528784648188e-06, "epoch": 0.8108918610927848, "percentage": 27.03, "elapsed_time": "2:45:59", "remaining_time": "7:28:05"} +{"current_steps": 1695, "total_steps": 6252, "loss": 0.9795, "learning_rate": 9.035181236673775e-06, "epoch": 0.8132909494392131, "percentage": 27.11, "elapsed_time": "2:46:20", "remaining_time": "7:27:13"} +{"current_steps": 1700, "total_steps": 6252, "loss": 0.9447, "learning_rate": 9.06183368869936e-06, "epoch": 0.8156900377856414, "percentage": 27.19, "elapsed_time": "2:46:41", "remaining_time": "7:26:19"} +{"current_steps": 1700, "total_steps": 6252, "eval_loss": 0.9945608377456665, "epoch": 0.8156900377856414, "percentage": 27.19, "elapsed_time": "2:49:36", "remaining_time": "7:34:09"} +{"current_steps": 1705, "total_steps": 6252, "loss": 1.0695, "learning_rate": 9.088486140724947e-06, "epoch": 0.8180891261320699, "percentage": 27.27, "elapsed_time": "2:49:56", "remaining_time": "7:33:13"} +{"current_steps": 1710, "total_steps": 6252, "loss": 0.9614, "learning_rate": 9.115138592750533e-06, "epoch": 0.8204882144784982, "percentage": 27.35, "elapsed_time": "2:50:17", "remaining_time": "7:32:20"} +{"current_steps": 1715, "total_steps": 6252, "loss": 1.055, "learning_rate": 9.14179104477612e-06, "epoch": 0.8228873028249265, "percentage": 27.43, "elapsed_time": "2:50:39", "remaining_time": "7:31:29"} +{"current_steps": 1720, "total_steps": 6252, "loss": 0.9108, "learning_rate": 9.168443496801706e-06, "epoch": 0.8252863911713549, "percentage": 27.51, "elapsed_time": "2:51:00", "remaining_time": "7:30:34"} +{"current_steps": 1725, "total_steps": 6252, "loss": 0.9487, "learning_rate": 9.195095948827292e-06, "epoch": 0.8276854795177833, "percentage": 27.59, "elapsed_time": "2:51:20", "remaining_time": "7:29:39"} +{"current_steps": 1730, "total_steps": 6252, "loss": 0.9393, "learning_rate": 9.221748400852879e-06, "epoch": 0.8300845678642116, "percentage": 27.67, "elapsed_time": "2:51:40", "remaining_time": "7:28:45"} +{"current_steps": 1735, "total_steps": 6252, "loss": 0.9992, "learning_rate": 9.248400852878465e-06, "epoch": 0.8324836562106399, "percentage": 27.75, "elapsed_time": "2:52:01", "remaining_time": "7:27:50"} +{"current_steps": 1740, "total_steps": 6252, "loss": 1.0015, "learning_rate": 9.275053304904051e-06, "epoch": 0.8348827445570683, "percentage": 27.83, "elapsed_time": "2:52:21", "remaining_time": "7:26:56"} +{"current_steps": 1745, "total_steps": 6252, "loss": 0.977, "learning_rate": 9.30170575692964e-06, "epoch": 0.8372818329034967, "percentage": 27.91, "elapsed_time": "2:52:40", "remaining_time": "7:25:59"} +{"current_steps": 1750, "total_steps": 6252, "loss": 1.0238, "learning_rate": 9.328358208955226e-06, "epoch": 0.839680921249925, "percentage": 27.99, "elapsed_time": "2:53:01", "remaining_time": "7:25:06"} +{"current_steps": 1755, "total_steps": 6252, "loss": 0.9109, "learning_rate": 9.35501066098081e-06, "epoch": 0.8420800095963534, "percentage": 28.07, "elapsed_time": "2:53:22", "remaining_time": "7:24:14"} +{"current_steps": 1760, "total_steps": 6252, "loss": 0.9748, "learning_rate": 9.381663113006397e-06, "epoch": 0.8444790979427818, "percentage": 28.15, "elapsed_time": "2:53:42", "remaining_time": "7:23:20"} +{"current_steps": 1765, "total_steps": 6252, "loss": 0.9892, "learning_rate": 9.408315565031983e-06, "epoch": 0.8468781862892101, "percentage": 28.23, "elapsed_time": "2:54:01", "remaining_time": "7:22:25"} +{"current_steps": 1770, "total_steps": 6252, "loss": 0.9563, "learning_rate": 9.43496801705757e-06, "epoch": 0.8492772746356385, "percentage": 28.31, "elapsed_time": "2:54:22", "remaining_time": "7:21:34"} +{"current_steps": 1775, "total_steps": 6252, "loss": 1.0417, "learning_rate": 9.461620469083156e-06, "epoch": 0.8516763629820668, "percentage": 28.39, "elapsed_time": "2:54:42", "remaining_time": "7:20:38"} +{"current_steps": 1780, "total_steps": 6252, "loss": 0.921, "learning_rate": 9.488272921108744e-06, "epoch": 0.8540754513284952, "percentage": 28.47, "elapsed_time": "2:55:02", "remaining_time": "7:19:46"} +{"current_steps": 1785, "total_steps": 6252, "loss": 1.0076, "learning_rate": 9.51492537313433e-06, "epoch": 0.8564745396749235, "percentage": 28.55, "elapsed_time": "2:55:24", "remaining_time": "7:18:57"} +{"current_steps": 1790, "total_steps": 6252, "loss": 1.0417, "learning_rate": 9.541577825159916e-06, "epoch": 0.8588736280213519, "percentage": 28.63, "elapsed_time": "2:55:45", "remaining_time": "7:18:06"} +{"current_steps": 1795, "total_steps": 6252, "loss": 0.934, "learning_rate": 9.568230277185503e-06, "epoch": 0.8612727163677802, "percentage": 28.71, "elapsed_time": "2:56:06", "remaining_time": "7:17:16"} +{"current_steps": 1800, "total_steps": 6252, "loss": 1.0, "learning_rate": 9.594882729211089e-06, "epoch": 0.8636718047142086, "percentage": 28.79, "elapsed_time": "2:56:25", "remaining_time": "7:16:21"} +{"current_steps": 1800, "total_steps": 6252, "eval_loss": 0.9894086718559265, "epoch": 0.8636718047142086, "percentage": 28.79, "elapsed_time": "2:59:21", "remaining_time": "7:23:36"} +{"current_steps": 1805, "total_steps": 6252, "loss": 0.9134, "learning_rate": 9.621535181236673e-06, "epoch": 0.866070893060637, "percentage": 28.87, "elapsed_time": "3:00:15", "remaining_time": "7:24:05"} +{"current_steps": 1810, "total_steps": 6252, "loss": 1.033, "learning_rate": 9.64818763326226e-06, "epoch": 0.8684699814070653, "percentage": 28.95, "elapsed_time": "3:00:33", "remaining_time": "7:23:06"} +{"current_steps": 1815, "total_steps": 6252, "loss": 1.0698, "learning_rate": 9.674840085287848e-06, "epoch": 0.8708690697534937, "percentage": 29.03, "elapsed_time": "3:00:53", "remaining_time": "7:22:11"} +{"current_steps": 1820, "total_steps": 6252, "loss": 1.0128, "learning_rate": 9.701492537313434e-06, "epoch": 0.873268158099922, "percentage": 29.11, "elapsed_time": "3:01:13", "remaining_time": "7:21:17"} +{"current_steps": 1825, "total_steps": 6252, "loss": 0.9641, "learning_rate": 9.72814498933902e-06, "epoch": 0.8756672464463504, "percentage": 29.19, "elapsed_time": "3:01:34", "remaining_time": "7:20:28"} +{"current_steps": 1830, "total_steps": 6252, "loss": 1.0036, "learning_rate": 9.754797441364607e-06, "epoch": 0.8780663347927787, "percentage": 29.27, "elapsed_time": "3:01:56", "remaining_time": "7:19:37"} +{"current_steps": 1835, "total_steps": 6252, "loss": 1.0096, "learning_rate": 9.781449893390193e-06, "epoch": 0.8804654231392071, "percentage": 29.35, "elapsed_time": "3:02:15", "remaining_time": "7:18:42"} +{"current_steps": 1840, "total_steps": 6252, "loss": 0.9844, "learning_rate": 9.80810234541578e-06, "epoch": 0.8828645114856355, "percentage": 29.43, "elapsed_time": "3:02:35", "remaining_time": "7:17:49"} +{"current_steps": 1845, "total_steps": 6252, "loss": 0.9803, "learning_rate": 9.834754797441366e-06, "epoch": 0.8852635998320638, "percentage": 29.51, "elapsed_time": "3:02:56", "remaining_time": "7:16:58"} +{"current_steps": 1850, "total_steps": 6252, "loss": 0.9482, "learning_rate": 9.861407249466952e-06, "epoch": 0.8876626881784921, "percentage": 29.59, "elapsed_time": "3:03:15", "remaining_time": "7:16:03"} +{"current_steps": 1855, "total_steps": 6252, "loss": 0.8553, "learning_rate": 9.888059701492538e-06, "epoch": 0.8900617765249206, "percentage": 29.67, "elapsed_time": "3:03:36", "remaining_time": "7:15:13"} +{"current_steps": 1860, "total_steps": 6252, "loss": 0.9406, "learning_rate": 9.914712153518125e-06, "epoch": 0.8924608648713489, "percentage": 29.75, "elapsed_time": "3:03:57", "remaining_time": "7:14:23"} +{"current_steps": 1865, "total_steps": 6252, "loss": 1.0665, "learning_rate": 9.941364605543711e-06, "epoch": 0.8948599532177772, "percentage": 29.83, "elapsed_time": "3:04:17", "remaining_time": "7:13:30"} +{"current_steps": 1870, "total_steps": 6252, "loss": 0.9742, "learning_rate": 9.968017057569297e-06, "epoch": 0.8972590415642056, "percentage": 29.91, "elapsed_time": "3:04:38", "remaining_time": "7:12:40"} +{"current_steps": 1875, "total_steps": 6252, "loss": 0.9881, "learning_rate": 9.994669509594884e-06, "epoch": 0.899658129910634, "percentage": 29.99, "elapsed_time": "3:04:59", "remaining_time": "7:11:49"} +{"current_steps": 1880, "total_steps": 6252, "loss": 0.8914, "learning_rate": 9.999979383980725e-06, "epoch": 0.9020572182570623, "percentage": 30.07, "elapsed_time": "3:05:20", "remaining_time": "7:11:01"} +{"current_steps": 1885, "total_steps": 6252, "loss": 0.9904, "learning_rate": 9.999895631693786e-06, "epoch": 0.9044563066034906, "percentage": 30.15, "elapsed_time": "3:05:40", "remaining_time": "7:10:09"} +{"current_steps": 1890, "total_steps": 6252, "loss": 1.0054, "learning_rate": 9.999747455716298e-06, "epoch": 0.9068553949499191, "percentage": 30.23, "elapsed_time": "3:06:01", "remaining_time": "7:09:19"} +{"current_steps": 1895, "total_steps": 6252, "loss": 1.0812, "learning_rate": 9.999534857957508e-06, "epoch": 0.9092544832963474, "percentage": 30.31, "elapsed_time": "3:06:23", "remaining_time": "7:08:32"} +{"current_steps": 1900, "total_steps": 6252, "loss": 0.9685, "learning_rate": 9.999257841156743e-06, "epoch": 0.9116535716427757, "percentage": 30.39, "elapsed_time": "3:06:43", "remaining_time": "7:07:42"} +{"current_steps": 1900, "total_steps": 6252, "eval_loss": 0.9848875999450684, "epoch": 0.9116535716427757, "percentage": 30.39, "elapsed_time": "3:09:40", "remaining_time": "7:14:28"} +{"current_steps": 1905, "total_steps": 6252, "loss": 1.0029, "learning_rate": 9.998916408883365e-06, "epoch": 0.9140526599892042, "percentage": 30.47, "elapsed_time": "3:10:00", "remaining_time": "7:13:35"} +{"current_steps": 1910, "total_steps": 6252, "loss": 0.9063, "learning_rate": 9.99851056553673e-06, "epoch": 0.9164517483356325, "percentage": 30.55, "elapsed_time": "3:10:19", "remaining_time": "7:12:40"} +{"current_steps": 1915, "total_steps": 6252, "loss": 1.0225, "learning_rate": 9.998040316346134e-06, "epoch": 0.9188508366820608, "percentage": 30.63, "elapsed_time": "3:10:40", "remaining_time": "7:11:50"} +{"current_steps": 1920, "total_steps": 6252, "loss": 0.9892, "learning_rate": 9.99750566737074e-06, "epoch": 0.9212499250284891, "percentage": 30.71, "elapsed_time": "3:11:01", "remaining_time": "7:10:59"} +{"current_steps": 1925, "total_steps": 6252, "loss": 0.9066, "learning_rate": 9.996906625499504e-06, "epoch": 0.9236490133749176, "percentage": 30.79, "elapsed_time": "3:11:21", "remaining_time": "7:10:08"} +{"current_steps": 1930, "total_steps": 6252, "loss": 1.0039, "learning_rate": 9.996243198451085e-06, "epoch": 0.9260481017213459, "percentage": 30.87, "elapsed_time": "3:11:40", "remaining_time": "7:09:13"} +{"current_steps": 1935, "total_steps": 6252, "loss": 0.9956, "learning_rate": 9.995515394773744e-06, "epoch": 0.9284471900677742, "percentage": 30.95, "elapsed_time": "3:11:59", "remaining_time": "7:08:19"} +{"current_steps": 1940, "total_steps": 6252, "loss": 0.9169, "learning_rate": 9.99472322384524e-06, "epoch": 0.9308462784142026, "percentage": 31.03, "elapsed_time": "3:12:19", "remaining_time": "7:07:29"} +{"current_steps": 1945, "total_steps": 6252, "loss": 0.9753, "learning_rate": 9.993866695872699e-06, "epoch": 0.933245366760631, "percentage": 31.11, "elapsed_time": "3:12:39", "remaining_time": "7:06:37"} +{"current_steps": 1950, "total_steps": 6252, "loss": 1.0543, "learning_rate": 9.992945821892488e-06, "epoch": 0.9356444551070593, "percentage": 31.19, "elapsed_time": "3:12:59", "remaining_time": "7:05:46"} +{"current_steps": 1955, "total_steps": 6252, "loss": 1.039, "learning_rate": 9.991960613770078e-06, "epoch": 0.9380435434534877, "percentage": 31.27, "elapsed_time": "3:13:21", "remaining_time": "7:04:59"} +{"current_steps": 1960, "total_steps": 6252, "loss": 0.9921, "learning_rate": 9.990911084199879e-06, "epoch": 0.940442631799916, "percentage": 31.35, "elapsed_time": "3:13:41", "remaining_time": "7:04:09"} +{"current_steps": 1965, "total_steps": 6252, "loss": 1.0042, "learning_rate": 9.98979724670509e-06, "epoch": 0.9428417201463444, "percentage": 31.43, "elapsed_time": "3:14:00", "remaining_time": "7:03:16"} +{"current_steps": 1970, "total_steps": 6252, "loss": 0.9578, "learning_rate": 9.988619115637514e-06, "epoch": 0.9452408084927727, "percentage": 31.51, "elapsed_time": "3:14:20", "remaining_time": "7:02:25"} +{"current_steps": 1975, "total_steps": 6252, "loss": 0.9997, "learning_rate": 9.98737670617738e-06, "epoch": 0.9476398968392011, "percentage": 31.59, "elapsed_time": "3:14:40", "remaining_time": "7:01:34"} +{"current_steps": 1980, "total_steps": 6252, "loss": 1.0004, "learning_rate": 9.98607003433314e-06, "epoch": 0.9500389851856295, "percentage": 31.67, "elapsed_time": "3:15:01", "remaining_time": "7:00:47"} +{"current_steps": 1985, "total_steps": 6252, "loss": 0.8219, "learning_rate": 9.98469911694127e-06, "epoch": 0.9524380735320578, "percentage": 31.75, "elapsed_time": "3:15:24", "remaining_time": "7:00:04"} +{"current_steps": 1990, "total_steps": 6252, "loss": 1.0284, "learning_rate": 9.983263971666051e-06, "epoch": 0.9548371618784862, "percentage": 31.83, "elapsed_time": "3:15:52", "remaining_time": "6:59:30"} +{"current_steps": 1995, "total_steps": 6252, "loss": 1.022, "learning_rate": 9.981764616999339e-06, "epoch": 0.9572362502249145, "percentage": 31.91, "elapsed_time": "3:16:12", "remaining_time": "6:58:40"} +{"current_steps": 2000, "total_steps": 6252, "loss": 0.8576, "learning_rate": 9.980201072260332e-06, "epoch": 0.9596353385713429, "percentage": 31.99, "elapsed_time": "3:16:33", "remaining_time": "6:57:52"} +{"current_steps": 2000, "total_steps": 6252, "eval_loss": 0.9806957244873047, "epoch": 0.9596353385713429, "percentage": 31.99, "elapsed_time": "3:19:30", "remaining_time": "7:04:08"} +{"current_steps": 2005, "total_steps": 6252, "loss": 1.0717, "learning_rate": 9.978573357595314e-06, "epoch": 0.9620344269177713, "percentage": 32.07, "elapsed_time": "3:20:26", "remaining_time": "7:04:35"} +{"current_steps": 2010, "total_steps": 6252, "loss": 0.9899, "learning_rate": 9.9768814939774e-06, "epoch": 0.9644335152641996, "percentage": 32.15, "elapsed_time": "3:20:46", "remaining_time": "7:03:44"} +{"current_steps": 2015, "total_steps": 6252, "loss": 1.047, "learning_rate": 9.975125503206262e-06, "epoch": 0.966832603610628, "percentage": 32.23, "elapsed_time": "3:21:08", "remaining_time": "7:02:56"} +{"current_steps": 2020, "total_steps": 6252, "loss": 0.8933, "learning_rate": 9.973305407907856e-06, "epoch": 0.9692316919570563, "percentage": 32.31, "elapsed_time": "3:21:27", "remaining_time": "7:02:04"} +{"current_steps": 2025, "total_steps": 6252, "loss": 0.9153, "learning_rate": 9.971421231534123e-06, "epoch": 0.9716307803034847, "percentage": 32.39, "elapsed_time": "3:21:47", "remaining_time": "7:01:13"} +{"current_steps": 2030, "total_steps": 6252, "loss": 0.9508, "learning_rate": 9.96947299836269e-06, "epoch": 0.974029868649913, "percentage": 32.47, "elapsed_time": "3:22:07", "remaining_time": "7:00:22"} +{"current_steps": 2035, "total_steps": 6252, "loss": 0.945, "learning_rate": 9.967460733496552e-06, "epoch": 0.9764289569963414, "percentage": 32.55, "elapsed_time": "3:22:30", "remaining_time": "6:59:39"} +{"current_steps": 2040, "total_steps": 6252, "loss": 0.9655, "learning_rate": 9.965384462863757e-06, "epoch": 0.9788280453427698, "percentage": 32.63, "elapsed_time": "3:22:50", "remaining_time": "6:58:48"} +{"current_steps": 2045, "total_steps": 6252, "loss": 1.094, "learning_rate": 9.96324421321707e-06, "epoch": 0.9812271336891981, "percentage": 32.71, "elapsed_time": "3:23:11", "remaining_time": "6:58:01"} +{"current_steps": 2050, "total_steps": 6252, "loss": 0.8919, "learning_rate": 9.961040012133618e-06, "epoch": 0.9836262220356264, "percentage": 32.79, "elapsed_time": "3:23:33", "remaining_time": "6:57:15"} +{"current_steps": 2055, "total_steps": 6252, "loss": 1.0294, "learning_rate": 9.958771888014549e-06, "epoch": 0.9860253103820548, "percentage": 32.87, "elapsed_time": "3:23:55", "remaining_time": "6:56:28"} +{"current_steps": 2060, "total_steps": 6252, "loss": 1.0486, "learning_rate": 9.95643987008466e-06, "epoch": 0.9884243987284832, "percentage": 32.95, "elapsed_time": "3:24:16", "remaining_time": "6:55:41"} +{"current_steps": 2065, "total_steps": 6252, "loss": 1.0447, "learning_rate": 9.954043988392017e-06, "epoch": 0.9908234870749115, "percentage": 33.03, "elapsed_time": "3:24:37", "remaining_time": "6:54:54"} +{"current_steps": 2070, "total_steps": 6252, "loss": 0.9619, "learning_rate": 9.951584273807574e-06, "epoch": 0.9932225754213398, "percentage": 33.11, "elapsed_time": "3:24:57", "remaining_time": "6:54:04"} +{"current_steps": 2075, "total_steps": 6252, "loss": 0.9278, "learning_rate": 9.949060758024768e-06, "epoch": 0.9956216637677683, "percentage": 33.19, "elapsed_time": "3:25:16", "remaining_time": "6:53:12"} +{"current_steps": 2080, "total_steps": 6252, "loss": 0.9724, "learning_rate": 9.946473473559122e-06, "epoch": 0.9980207521141966, "percentage": 33.27, "elapsed_time": "3:25:36", "remaining_time": "6:52:24"} +{"current_steps": 2085, "total_steps": 6252, "loss": 0.9471, "learning_rate": 9.943822453747811e-06, "epoch": 1.000419840460625, "percentage": 33.35, "elapsed_time": "3:26:02", "remaining_time": "6:51:47"} +{"current_steps": 2090, "total_steps": 6252, "loss": 0.8855, "learning_rate": 9.941107732749247e-06, "epoch": 1.0028189288070533, "percentage": 33.43, "elapsed_time": "3:26:21", "remaining_time": "6:50:56"} +{"current_steps": 2095, "total_steps": 6252, "loss": 1.013, "learning_rate": 9.938329345542626e-06, "epoch": 1.0052180171534817, "percentage": 33.51, "elapsed_time": "3:26:42", "remaining_time": "6:50:08"} +{"current_steps": 2100, "total_steps": 6252, "loss": 0.8853, "learning_rate": 9.935487327927487e-06, "epoch": 1.0076171054999101, "percentage": 33.59, "elapsed_time": "3:27:02", "remaining_time": "6:49:21"} +{"current_steps": 2100, "total_steps": 6252, "eval_loss": 0.9774662256240845, "epoch": 1.0076171054999101, "percentage": 33.59, "elapsed_time": "3:29:59", "remaining_time": "6:55:10"} +{"current_steps": 2105, "total_steps": 6252, "loss": 1.0145, "learning_rate": 9.93258171652325e-06, "epoch": 1.0100161938463383, "percentage": 33.67, "elapsed_time": "3:30:20", "remaining_time": "6:54:22"} +{"current_steps": 2110, "total_steps": 6252, "loss": 1.0052, "learning_rate": 9.929612548768735e-06, "epoch": 1.0124152821927668, "percentage": 33.75, "elapsed_time": "3:30:39", "remaining_time": "6:53:32"} +{"current_steps": 2115, "total_steps": 6252, "loss": 0.9061, "learning_rate": 9.926579862921693e-06, "epoch": 1.0148143705391952, "percentage": 33.83, "elapsed_time": "3:30:58", "remaining_time": "6:52:41"} +{"current_steps": 2120, "total_steps": 6252, "loss": 0.7924, "learning_rate": 9.923483698058301e-06, "epoch": 1.0172134588856234, "percentage": 33.91, "elapsed_time": "3:31:17", "remaining_time": "6:51:49"} +{"current_steps": 2125, "total_steps": 6252, "loss": 0.7767, "learning_rate": 9.920324094072663e-06, "epoch": 1.0196125472320519, "percentage": 33.99, "elapsed_time": "3:31:39", "remaining_time": "6:51:03"} +{"current_steps": 2130, "total_steps": 6252, "loss": 0.9295, "learning_rate": 9.917101091676302e-06, "epoch": 1.02201163557848, "percentage": 34.07, "elapsed_time": "3:31:59", "remaining_time": "6:50:14"} +{"current_steps": 2135, "total_steps": 6252, "loss": 0.8664, "learning_rate": 9.913814732397624e-06, "epoch": 1.0244107239249085, "percentage": 34.15, "elapsed_time": "3:32:20", "remaining_time": "6:49:27"} +{"current_steps": 2140, "total_steps": 6252, "loss": 1.0206, "learning_rate": 9.910465058581395e-06, "epoch": 1.026809812271337, "percentage": 34.23, "elapsed_time": "3:32:39", "remaining_time": "6:48:37"} +{"current_steps": 2145, "total_steps": 6252, "loss": 0.9652, "learning_rate": 9.907052113388183e-06, "epoch": 1.0292089006177652, "percentage": 34.31, "elapsed_time": "3:32:59", "remaining_time": "6:47:48"} +{"current_steps": 2150, "total_steps": 6252, "loss": 0.795, "learning_rate": 9.90357594079381e-06, "epoch": 1.0316079889641936, "percentage": 34.39, "elapsed_time": "3:33:17", "remaining_time": "6:46:57"} +{"current_steps": 2155, "total_steps": 6252, "loss": 0.8602, "learning_rate": 9.900036585588788e-06, "epoch": 1.034007077310622, "percentage": 34.47, "elapsed_time": "3:33:39", "remaining_time": "6:46:11"} +{"current_steps": 2160, "total_steps": 6252, "loss": 0.9133, "learning_rate": 9.89643409337773e-06, "epoch": 1.0364061656570502, "percentage": 34.55, "elapsed_time": "3:33:59", "remaining_time": "6:45:23"} +{"current_steps": 2165, "total_steps": 6252, "loss": 0.9104, "learning_rate": 9.892768510578777e-06, "epoch": 1.0388052540034787, "percentage": 34.63, "elapsed_time": "3:34:20", "remaining_time": "6:44:36"} +{"current_steps": 2170, "total_steps": 6252, "loss": 0.9898, "learning_rate": 9.889039884422989e-06, "epoch": 1.041204342349907, "percentage": 34.71, "elapsed_time": "3:34:42", "remaining_time": "6:43:53"} +{"current_steps": 2175, "total_steps": 6252, "loss": 1.031, "learning_rate": 9.885248262953736e-06, "epoch": 1.0436034306963353, "percentage": 34.79, "elapsed_time": "3:35:02", "remaining_time": "6:43:05"} +{"current_steps": 2180, "total_steps": 6252, "loss": 0.9867, "learning_rate": 9.88139369502609e-06, "epoch": 1.0460025190427638, "percentage": 34.87, "elapsed_time": "3:35:22", "remaining_time": "6:42:18"} +{"current_steps": 2185, "total_steps": 6252, "loss": 0.9899, "learning_rate": 9.87747623030619e-06, "epoch": 1.0484016073891922, "percentage": 34.95, "elapsed_time": "3:35:43", "remaining_time": "6:41:31"} +{"current_steps": 2190, "total_steps": 6252, "loss": 0.8685, "learning_rate": 9.873495919270593e-06, "epoch": 1.0508006957356204, "percentage": 35.03, "elapsed_time": "3:36:05", "remaining_time": "6:40:48"} +{"current_steps": 2195, "total_steps": 6252, "loss": 0.8505, "learning_rate": 9.869452813205632e-06, "epoch": 1.0531997840820488, "percentage": 35.11, "elapsed_time": "3:36:24", "remaining_time": "6:39:59"} +{"current_steps": 2200, "total_steps": 6252, "loss": 0.947, "learning_rate": 9.865346964206762e-06, "epoch": 1.0555988724284773, "percentage": 35.19, "elapsed_time": "3:36:44", "remaining_time": "6:39:11"} +{"current_steps": 2200, "total_steps": 6252, "eval_loss": 0.9739471673965454, "epoch": 1.0555988724284773, "percentage": 35.19, "elapsed_time": "3:39:40", "remaining_time": "6:44:35"} +{"current_steps": 2205, "total_steps": 6252, "loss": 0.9071, "learning_rate": 9.861178425177874e-06, "epoch": 1.0579979607749055, "percentage": 35.27, "elapsed_time": "3:40:37", "remaining_time": "6:44:56"} +{"current_steps": 2210, "total_steps": 6252, "loss": 0.9053, "learning_rate": 9.856947249830624e-06, "epoch": 1.060397049121334, "percentage": 35.35, "elapsed_time": "3:40:56", "remaining_time": "6:44:06"} +{"current_steps": 2215, "total_steps": 6252, "loss": 0.974, "learning_rate": 9.852653492683735e-06, "epoch": 1.0627961374677621, "percentage": 35.43, "elapsed_time": "3:41:15", "remaining_time": "6:43:15"} +{"current_steps": 2220, "total_steps": 6252, "loss": 0.8943, "learning_rate": 9.848297209062299e-06, "epoch": 1.0651952258141906, "percentage": 35.51, "elapsed_time": "3:41:36", "remaining_time": "6:42:28"} +{"current_steps": 2225, "total_steps": 6252, "loss": 0.976, "learning_rate": 9.843878455097061e-06, "epoch": 1.067594314160619, "percentage": 35.59, "elapsed_time": "3:41:57", "remaining_time": "6:41:42"} +{"current_steps": 2230, "total_steps": 6252, "loss": 0.8868, "learning_rate": 9.839397287723695e-06, "epoch": 1.0699934025070472, "percentage": 35.67, "elapsed_time": "3:42:17", "remaining_time": "6:40:55"} +{"current_steps": 2235, "total_steps": 6252, "loss": 0.9177, "learning_rate": 9.83485376468208e-06, "epoch": 1.0723924908534757, "percentage": 35.75, "elapsed_time": "3:42:38", "remaining_time": "6:40:10"} +{"current_steps": 2240, "total_steps": 6252, "loss": 0.9299, "learning_rate": 9.830247944515536e-06, "epoch": 1.074791579199904, "percentage": 35.83, "elapsed_time": "3:42:58", "remaining_time": "6:39:22"} +{"current_steps": 2245, "total_steps": 6252, "loss": 0.9351, "learning_rate": 9.825579886570094e-06, "epoch": 1.0771906675463323, "percentage": 35.91, "elapsed_time": "3:43:20", "remaining_time": "6:38:37"} +{"current_steps": 2250, "total_steps": 6252, "loss": 0.8633, "learning_rate": 9.820849650993709e-06, "epoch": 1.0795897558927607, "percentage": 35.99, "elapsed_time": "3:43:39", "remaining_time": "6:37:49"} +{"current_steps": 2255, "total_steps": 6252, "loss": 1.0134, "learning_rate": 9.816057298735501e-06, "epoch": 1.0819888442391892, "percentage": 36.07, "elapsed_time": "3:43:59", "remaining_time": "6:37:01"} +{"current_steps": 2260, "total_steps": 6252, "loss": 0.9708, "learning_rate": 9.811202891544965e-06, "epoch": 1.0843879325856174, "percentage": 36.15, "elapsed_time": "3:44:19", "remaining_time": "6:36:14"} +{"current_steps": 2265, "total_steps": 6252, "loss": 0.868, "learning_rate": 9.80628649197117e-06, "epoch": 1.0867870209320458, "percentage": 36.23, "elapsed_time": "3:44:39", "remaining_time": "6:35:26"} +{"current_steps": 2270, "total_steps": 6252, "loss": 0.9277, "learning_rate": 9.80130816336196e-06, "epoch": 1.0891861092784743, "percentage": 36.31, "elapsed_time": "3:45:02", "remaining_time": "6:34:45"} +{"current_steps": 2275, "total_steps": 6252, "loss": 0.9102, "learning_rate": 9.796267969863134e-06, "epoch": 1.0915851976249025, "percentage": 36.39, "elapsed_time": "3:45:23", "remaining_time": "6:34:00"} +{"current_steps": 2280, "total_steps": 6252, "loss": 0.8154, "learning_rate": 9.791165976417621e-06, "epoch": 1.093984285971331, "percentage": 36.47, "elapsed_time": "3:45:42", "remaining_time": "6:33:12"} +{"current_steps": 2285, "total_steps": 6252, "loss": 0.8024, "learning_rate": 9.786002248764642e-06, "epoch": 1.0963833743177593, "percentage": 36.55, "elapsed_time": "3:46:03", "remaining_time": "6:32:27"} +{"current_steps": 2290, "total_steps": 6252, "loss": 0.9436, "learning_rate": 9.780776853438863e-06, "epoch": 1.0987824626641876, "percentage": 36.63, "elapsed_time": "3:46:23", "remaining_time": "6:31:41"} +{"current_steps": 2295, "total_steps": 6252, "loss": 0.888, "learning_rate": 9.775489857769544e-06, "epoch": 1.101181551010616, "percentage": 36.71, "elapsed_time": "3:46:45", "remaining_time": "6:30:57"} +{"current_steps": 2300, "total_steps": 6252, "loss": 0.9207, "learning_rate": 9.770141329879658e-06, "epoch": 1.1035806393570444, "percentage": 36.79, "elapsed_time": "3:47:05", "remaining_time": "6:30:12"} +{"current_steps": 2300, "total_steps": 6252, "eval_loss": 0.9713129997253418, "epoch": 1.1035806393570444, "percentage": 36.79, "elapsed_time": "3:50:01", "remaining_time": "6:35:14"} +{"current_steps": 2305, "total_steps": 6252, "loss": 0.9329, "learning_rate": 9.764731338685026e-06, "epoch": 1.1059797277034726, "percentage": 36.87, "elapsed_time": "3:50:24", "remaining_time": "6:34:32"} +{"current_steps": 2310, "total_steps": 6252, "loss": 0.9009, "learning_rate": 9.75925995389342e-06, "epoch": 1.108378816049901, "percentage": 36.95, "elapsed_time": "3:50:44", "remaining_time": "6:33:46"} +{"current_steps": 2315, "total_steps": 6252, "loss": 0.9371, "learning_rate": 9.753727246003677e-06, "epoch": 1.1107779043963295, "percentage": 37.03, "elapsed_time": "3:51:04", "remaining_time": "6:32:58"} +{"current_steps": 2320, "total_steps": 6252, "loss": 0.9952, "learning_rate": 9.748133286304774e-06, "epoch": 1.1131769927427577, "percentage": 37.11, "elapsed_time": "3:51:25", "remaining_time": "6:32:13"} +{"current_steps": 2325, "total_steps": 6252, "loss": 0.8928, "learning_rate": 9.74247814687492e-06, "epoch": 1.1155760810891862, "percentage": 37.19, "elapsed_time": "3:51:45", "remaining_time": "6:31:27"} +{"current_steps": 2330, "total_steps": 6252, "loss": 0.7709, "learning_rate": 9.73676190058063e-06, "epoch": 1.1179751694356144, "percentage": 37.27, "elapsed_time": "3:52:08", "remaining_time": "6:30:45"} +{"current_steps": 2335, "total_steps": 6252, "loss": 0.9633, "learning_rate": 9.730984621075777e-06, "epoch": 1.1203742577820428, "percentage": 37.35, "elapsed_time": "3:52:28", "remaining_time": "6:29:58"} +{"current_steps": 2340, "total_steps": 6252, "loss": 0.9883, "learning_rate": 9.725146382800644e-06, "epoch": 1.1227733461284712, "percentage": 37.43, "elapsed_time": "3:52:50", "remaining_time": "6:29:15"} +{"current_steps": 2345, "total_steps": 6252, "loss": 0.8631, "learning_rate": 9.719247260980977e-06, "epoch": 1.1251724344748995, "percentage": 37.51, "elapsed_time": "3:53:09", "remaining_time": "6:28:28"} +{"current_steps": 2350, "total_steps": 6252, "loss": 0.9008, "learning_rate": 9.713287331627002e-06, "epoch": 1.1275715228213279, "percentage": 37.59, "elapsed_time": "3:53:31", "remaining_time": "6:27:44"} +{"current_steps": 2355, "total_steps": 6252, "loss": 0.8715, "learning_rate": 9.70726667153245e-06, "epoch": 1.1299706111677563, "percentage": 37.67, "elapsed_time": "3:53:52", "remaining_time": "6:27:00"} +{"current_steps": 2360, "total_steps": 6252, "loss": 0.9063, "learning_rate": 9.701185358273568e-06, "epoch": 1.1323696995141845, "percentage": 37.75, "elapsed_time": "3:54:14", "remaining_time": "6:26:17"} +{"current_steps": 2365, "total_steps": 6252, "loss": 0.7194, "learning_rate": 9.69504347020812e-06, "epoch": 1.134768787860613, "percentage": 37.83, "elapsed_time": "3:54:33", "remaining_time": "6:25:29"} +{"current_steps": 2370, "total_steps": 6252, "loss": 0.8225, "learning_rate": 9.688841086474381e-06, "epoch": 1.1371678762070414, "percentage": 37.91, "elapsed_time": "3:54:52", "remaining_time": "6:24:43"} +{"current_steps": 2375, "total_steps": 6252, "loss": 1.033, "learning_rate": 9.682578286990105e-06, "epoch": 1.1395669645534696, "percentage": 37.99, "elapsed_time": "3:55:12", "remaining_time": "6:23:58"} +{"current_steps": 2380, "total_steps": 6252, "loss": 0.9202, "learning_rate": 9.676255152451508e-06, "epoch": 1.141966052899898, "percentage": 38.07, "elapsed_time": "3:55:35", "remaining_time": "6:23:17"} +{"current_steps": 2385, "total_steps": 6252, "loss": 0.9405, "learning_rate": 9.669871764332226e-06, "epoch": 1.1443651412463265, "percentage": 38.15, "elapsed_time": "3:55:56", "remaining_time": "6:22:32"} +{"current_steps": 2390, "total_steps": 6252, "loss": 0.9197, "learning_rate": 9.663428204882258e-06, "epoch": 1.1467642295927547, "percentage": 38.23, "elapsed_time": "3:56:18", "remaining_time": "6:21:51"} +{"current_steps": 2395, "total_steps": 6252, "loss": 0.9512, "learning_rate": 9.656924557126913e-06, "epoch": 1.1491633179391831, "percentage": 38.31, "elapsed_time": "3:56:39", "remaining_time": "6:21:06"} +{"current_steps": 2400, "total_steps": 6252, "loss": 0.8596, "learning_rate": 9.650360904865738e-06, "epoch": 1.1515624062856116, "percentage": 38.39, "elapsed_time": "3:57:00", "remaining_time": "6:20:23"} +{"current_steps": 2400, "total_steps": 6252, "eval_loss": 0.9691145420074463, "epoch": 1.1515624062856116, "percentage": 38.39, "elapsed_time": "3:59:55", "remaining_time": "6:25:04"} +{"current_steps": 2405, "total_steps": 6252, "loss": 1.0536, "learning_rate": 9.643737332671441e-06, "epoch": 1.1539614946320398, "percentage": 38.47, "elapsed_time": "4:00:50", "remaining_time": "6:25:14"} +{"current_steps": 2410, "total_steps": 6252, "loss": 0.8452, "learning_rate": 9.637053925888793e-06, "epoch": 1.1563605829784682, "percentage": 38.55, "elapsed_time": "4:01:10", "remaining_time": "6:24:28"} +{"current_steps": 2415, "total_steps": 6252, "loss": 0.7487, "learning_rate": 9.630310770633542e-06, "epoch": 1.1587596713248964, "percentage": 38.63, "elapsed_time": "4:01:30", "remaining_time": "6:23:42"} +{"current_steps": 2420, "total_steps": 6252, "loss": 1.0087, "learning_rate": 9.623507953791287e-06, "epoch": 1.1611587596713249, "percentage": 38.71, "elapsed_time": "4:01:50", "remaining_time": "6:22:57"} +{"current_steps": 2425, "total_steps": 6252, "loss": 0.9177, "learning_rate": 9.616645563016373e-06, "epoch": 1.1635578480177533, "percentage": 38.79, "elapsed_time": "4:02:10", "remaining_time": "6:22:11"} +{"current_steps": 2430, "total_steps": 6252, "loss": 0.8388, "learning_rate": 9.609723686730754e-06, "epoch": 1.1659569363641815, "percentage": 38.87, "elapsed_time": "4:02:29", "remaining_time": "6:21:23"} +{"current_steps": 2435, "total_steps": 6252, "loss": 0.962, "learning_rate": 9.602742414122855e-06, "epoch": 1.16835602471061, "percentage": 38.95, "elapsed_time": "4:02:49", "remaining_time": "6:20:37"} +{"current_steps": 2440, "total_steps": 6252, "loss": 0.9372, "learning_rate": 9.59570183514642e-06, "epoch": 1.1707551130570384, "percentage": 39.03, "elapsed_time": "4:03:10", "remaining_time": "6:19:54"} +{"current_steps": 2445, "total_steps": 6252, "loss": 0.9363, "learning_rate": 9.588602040519363e-06, "epoch": 1.1731542014034666, "percentage": 39.11, "elapsed_time": "4:03:30", "remaining_time": "6:19:09"} +{"current_steps": 2450, "total_steps": 6252, "loss": 0.8577, "learning_rate": 9.581443121722585e-06, "epoch": 1.175553289749895, "percentage": 39.19, "elapsed_time": "4:03:50", "remaining_time": "6:18:23"} +{"current_steps": 2455, "total_steps": 6252, "loss": 0.9581, "learning_rate": 9.574225170998807e-06, "epoch": 1.1779523780963235, "percentage": 39.27, "elapsed_time": "4:04:09", "remaining_time": "6:17:37"} +{"current_steps": 2460, "total_steps": 6252, "loss": 0.9223, "learning_rate": 9.566948281351373e-06, "epoch": 1.1803514664427517, "percentage": 39.35, "elapsed_time": "4:04:28", "remaining_time": "6:16:50"} +{"current_steps": 2465, "total_steps": 6252, "loss": 1.054, "learning_rate": 9.55961254654306e-06, "epoch": 1.1827505547891801, "percentage": 39.43, "elapsed_time": "4:04:49", "remaining_time": "6:16:07"} +{"current_steps": 2470, "total_steps": 6252, "loss": 0.8736, "learning_rate": 9.552218061094863e-06, "epoch": 1.1851496431356086, "percentage": 39.51, "elapsed_time": "4:05:09", "remaining_time": "6:15:22"} +{"current_steps": 2475, "total_steps": 6252, "loss": 0.8971, "learning_rate": 9.544764920284775e-06, "epoch": 1.1875487314820368, "percentage": 39.59, "elapsed_time": "4:05:29", "remaining_time": "6:14:38"} +{"current_steps": 2480, "total_steps": 6252, "loss": 0.961, "learning_rate": 9.537253220146574e-06, "epoch": 1.1899478198284652, "percentage": 39.67, "elapsed_time": "4:05:51", "remaining_time": "6:13:56"} +{"current_steps": 2485, "total_steps": 6252, "loss": 0.979, "learning_rate": 9.529683057468564e-06, "epoch": 1.1923469081748936, "percentage": 39.75, "elapsed_time": "4:06:11", "remaining_time": "6:13:11"} +{"current_steps": 2490, "total_steps": 6252, "loss": 0.8174, "learning_rate": 9.522054529792348e-06, "epoch": 1.1947459965213219, "percentage": 39.83, "elapsed_time": "4:06:29", "remaining_time": "6:12:24"} +{"current_steps": 2495, "total_steps": 6252, "loss": 0.7918, "learning_rate": 9.514367735411558e-06, "epoch": 1.1971450848677503, "percentage": 39.91, "elapsed_time": "4:06:49", "remaining_time": "6:11:40"} +{"current_steps": 2500, "total_steps": 6252, "loss": 1.0277, "learning_rate": 9.506622773370595e-06, "epoch": 1.1995441732141785, "percentage": 39.99, "elapsed_time": "4:07:09", "remaining_time": "6:10:55"} +{"current_steps": 2500, "total_steps": 6252, "eval_loss": 0.9654711484909058, "epoch": 1.1995441732141785, "percentage": 39.99, "elapsed_time": "4:10:04", "remaining_time": "6:15:19"} +{"current_steps": 2505, "total_steps": 6252, "loss": 1.0265, "learning_rate": 9.498819743463347e-06, "epoch": 1.201943261560607, "percentage": 40.07, "elapsed_time": "4:10:27", "remaining_time": "6:14:38"} +{"current_steps": 2510, "total_steps": 6252, "loss": 0.9911, "learning_rate": 9.490958746231911e-06, "epoch": 1.2043423499070354, "percentage": 40.15, "elapsed_time": "4:10:45", "remaining_time": "6:13:50"} +{"current_steps": 2515, "total_steps": 6252, "loss": 0.9705, "learning_rate": 9.483039882965293e-06, "epoch": 1.2067414382534638, "percentage": 40.23, "elapsed_time": "4:11:05", "remaining_time": "6:13:06"} +{"current_steps": 2520, "total_steps": 6252, "loss": 0.9417, "learning_rate": 9.4750632556981e-06, "epoch": 1.209140526599892, "percentage": 40.31, "elapsed_time": "4:11:25", "remaining_time": "6:12:21"} +{"current_steps": 2525, "total_steps": 6252, "loss": 0.9103, "learning_rate": 9.467028967209232e-06, "epoch": 1.2115396149463205, "percentage": 40.39, "elapsed_time": "4:11:45", "remaining_time": "6:11:35"} +{"current_steps": 2530, "total_steps": 6252, "loss": 0.8767, "learning_rate": 9.458937121020555e-06, "epoch": 1.2139387032927487, "percentage": 40.47, "elapsed_time": "4:12:06", "remaining_time": "6:10:53"} +{"current_steps": 2535, "total_steps": 6252, "loss": 0.8681, "learning_rate": 9.45078782139556e-06, "epoch": 1.216337791639177, "percentage": 40.55, "elapsed_time": "4:12:27", "remaining_time": "6:10:10"} +{"current_steps": 2540, "total_steps": 6252, "loss": 0.8802, "learning_rate": 9.442581173338032e-06, "epoch": 1.2187368799856055, "percentage": 40.63, "elapsed_time": "4:12:47", "remaining_time": "6:09:25"} +{"current_steps": 2545, "total_steps": 6252, "loss": 0.8075, "learning_rate": 9.43431728259069e-06, "epoch": 1.2211359683320337, "percentage": 40.71, "elapsed_time": "4:13:07", "remaining_time": "6:08:42"} +{"current_steps": 2550, "total_steps": 6252, "loss": 0.8549, "learning_rate": 9.425996255633825e-06, "epoch": 1.2235350566784622, "percentage": 40.79, "elapsed_time": "4:13:29", "remaining_time": "6:08:00"} +{"current_steps": 2555, "total_steps": 6252, "loss": 0.8986, "learning_rate": 9.417618199683926e-06, "epoch": 1.2259341450248906, "percentage": 40.87, "elapsed_time": "4:13:49", "remaining_time": "6:07:16"} +{"current_steps": 2560, "total_steps": 6252, "loss": 0.9454, "learning_rate": 9.409183222692307e-06, "epoch": 1.2283332333713188, "percentage": 40.95, "elapsed_time": "4:14:09", "remaining_time": "6:06:32"} +{"current_steps": 2565, "total_steps": 6252, "loss": 0.7339, "learning_rate": 9.4006914333437e-06, "epoch": 1.2307323217177473, "percentage": 41.03, "elapsed_time": "4:14:30", "remaining_time": "6:05:49"} +{"current_steps": 2570, "total_steps": 6252, "loss": 0.9632, "learning_rate": 9.392142941054878e-06, "epoch": 1.2331314100641757, "percentage": 41.11, "elapsed_time": "4:14:50", "remaining_time": "6:05:05"} +{"current_steps": 2575, "total_steps": 6252, "loss": 0.9105, "learning_rate": 9.38353785597322e-06, "epoch": 1.235530498410604, "percentage": 41.19, "elapsed_time": "4:15:09", "remaining_time": "6:04:20"} +{"current_steps": 2580, "total_steps": 6252, "loss": 0.8167, "learning_rate": 9.374876288975307e-06, "epoch": 1.2379295867570324, "percentage": 41.27, "elapsed_time": "4:15:29", "remaining_time": "6:03:37"} +{"current_steps": 2585, "total_steps": 6252, "loss": 0.871, "learning_rate": 9.366158351665495e-06, "epoch": 1.2403286751034606, "percentage": 41.35, "elapsed_time": "4:15:49", "remaining_time": "6:02:54"} +{"current_steps": 2590, "total_steps": 6252, "loss": 0.8765, "learning_rate": 9.357384156374465e-06, "epoch": 1.242727763449889, "percentage": 41.43, "elapsed_time": "4:16:08", "remaining_time": "6:02:09"} +{"current_steps": 2595, "total_steps": 6252, "loss": 1.032, "learning_rate": 9.348553816157785e-06, "epoch": 1.2451268517963174, "percentage": 41.51, "elapsed_time": "4:16:30", "remaining_time": "6:01:28"} +{"current_steps": 2600, "total_steps": 6252, "loss": 0.9646, "learning_rate": 9.339667444794456e-06, "epoch": 1.2475259401427459, "percentage": 41.59, "elapsed_time": "4:16:50", "remaining_time": "6:00:46"} +{"current_steps": 2600, "total_steps": 6252, "eval_loss": 0.9630805850028992, "epoch": 1.2475259401427459, "percentage": 41.59, "elapsed_time": "4:19:46", "remaining_time": "6:04:53"} +{"current_steps": 2605, "total_steps": 6252, "loss": 0.8976, "learning_rate": 9.33072515678543e-06, "epoch": 1.249925028489174, "percentage": 41.67, "elapsed_time": "4:20:43", "remaining_time": "6:05:00"} +{"current_steps": 2610, "total_steps": 6252, "loss": 0.9049, "learning_rate": 9.321727067352153e-06, "epoch": 1.2523241168356025, "percentage": 41.75, "elapsed_time": "4:21:05", "remaining_time": "6:04:19"} +{"current_steps": 2615, "total_steps": 6252, "loss": 0.9314, "learning_rate": 9.312673292435073e-06, "epoch": 1.2547232051820307, "percentage": 41.83, "elapsed_time": "4:21:25", "remaining_time": "6:03:35"} +{"current_steps": 2620, "total_steps": 6252, "loss": 0.9375, "learning_rate": 9.30356394869214e-06, "epoch": 1.2571222935284592, "percentage": 41.91, "elapsed_time": "4:21:45", "remaining_time": "6:02:51"} +{"current_steps": 2625, "total_steps": 6252, "loss": 0.886, "learning_rate": 9.294399153497316e-06, "epoch": 1.2595213818748876, "percentage": 41.99, "elapsed_time": "4:22:04", "remaining_time": "6:02:07"} +{"current_steps": 2630, "total_steps": 6252, "loss": 0.8899, "learning_rate": 9.28517902493905e-06, "epoch": 1.261920470221316, "percentage": 42.07, "elapsed_time": "4:22:24", "remaining_time": "6:01:23"} +{"current_steps": 2635, "total_steps": 6252, "loss": 0.8431, "learning_rate": 9.275903681818763e-06, "epoch": 1.2643195585677443, "percentage": 42.15, "elapsed_time": "4:22:44", "remaining_time": "6:00:38"} +{"current_steps": 2640, "total_steps": 6252, "loss": 0.9004, "learning_rate": 9.26657324364932e-06, "epoch": 1.2667186469141727, "percentage": 42.23, "elapsed_time": "4:23:04", "remaining_time": "5:59:55"} +{"current_steps": 2645, "total_steps": 6252, "loss": 0.8216, "learning_rate": 9.257187830653478e-06, "epoch": 1.269117735260601, "percentage": 42.31, "elapsed_time": "4:23:24", "remaining_time": "5:59:12"} +{"current_steps": 2650, "total_steps": 6252, "loss": 0.8482, "learning_rate": 9.247747563762353e-06, "epoch": 1.2715168236070293, "percentage": 42.39, "elapsed_time": "4:23:44", "remaining_time": "5:58:28"} +{"current_steps": 2655, "total_steps": 6252, "loss": 0.903, "learning_rate": 9.23825256461385e-06, "epoch": 1.2739159119534578, "percentage": 42.47, "elapsed_time": "4:24:03", "remaining_time": "5:57:45"} +{"current_steps": 2660, "total_steps": 6252, "loss": 0.8568, "learning_rate": 9.228702955551101e-06, "epoch": 1.276315000299886, "percentage": 42.55, "elapsed_time": "4:24:24", "remaining_time": "5:57:03"} +{"current_steps": 2665, "total_steps": 6252, "loss": 0.9839, "learning_rate": 9.219098859620884e-06, "epoch": 1.2787140886463144, "percentage": 42.63, "elapsed_time": "4:24:45", "remaining_time": "5:56:21"} +{"current_steps": 2670, "total_steps": 6252, "loss": 0.9935, "learning_rate": 9.209440400572045e-06, "epoch": 1.2811131769927426, "percentage": 42.71, "elapsed_time": "4:25:08", "remaining_time": "5:55:42"} +{"current_steps": 2675, "total_steps": 6252, "loss": 0.9291, "learning_rate": 9.199727702853896e-06, "epoch": 1.283512265339171, "percentage": 42.79, "elapsed_time": "4:25:28", "remaining_time": "5:54:59"} +{"current_steps": 2680, "total_steps": 6252, "loss": 0.8867, "learning_rate": 9.189960891614616e-06, "epoch": 1.2859113536855995, "percentage": 42.87, "elapsed_time": "4:25:48", "remaining_time": "5:54:16"} +{"current_steps": 2685, "total_steps": 6252, "loss": 0.9109, "learning_rate": 9.180140092699636e-06, "epoch": 1.288310442032028, "percentage": 42.95, "elapsed_time": "4:26:11", "remaining_time": "5:53:38"} +{"current_steps": 2690, "total_steps": 6252, "loss": 0.9201, "learning_rate": 9.17026543265002e-06, "epoch": 1.2907095303784561, "percentage": 43.03, "elapsed_time": "4:26:32", "remaining_time": "5:52:56"} +{"current_steps": 2695, "total_steps": 6252, "loss": 0.9066, "learning_rate": 9.160337038700834e-06, "epoch": 1.2931086187248846, "percentage": 43.11, "elapsed_time": "4:26:51", "remaining_time": "5:52:12"} +{"current_steps": 2700, "total_steps": 6252, "loss": 0.8583, "learning_rate": 9.150355038779504e-06, "epoch": 1.2955077070713128, "percentage": 43.19, "elapsed_time": "4:27:12", "remaining_time": "5:51:30"} +{"current_steps": 2700, "total_steps": 6252, "eval_loss": 0.9613306522369385, "epoch": 1.2955077070713128, "percentage": 43.19, "elapsed_time": "4:30:12", "remaining_time": "5:55:29"} +{"current_steps": 2705, "total_steps": 6252, "loss": 0.8036, "learning_rate": 9.140319561504168e-06, "epoch": 1.2979067954177412, "percentage": 43.27, "elapsed_time": "4:30:34", "remaining_time": "5:54:47"} +{"current_steps": 2710, "total_steps": 6252, "loss": 0.9962, "learning_rate": 9.13023073618202e-06, "epoch": 1.3003058837641697, "percentage": 43.35, "elapsed_time": "4:30:53", "remaining_time": "5:54:03"} +{"current_steps": 2715, "total_steps": 6252, "loss": 0.8352, "learning_rate": 9.12008869280765e-06, "epoch": 1.302704972110598, "percentage": 43.43, "elapsed_time": "4:31:16", "remaining_time": "5:53:23"} +{"current_steps": 2720, "total_steps": 6252, "loss": 0.992, "learning_rate": 9.109893562061353e-06, "epoch": 1.3051040604570263, "percentage": 43.51, "elapsed_time": "4:31:37", "remaining_time": "5:52:42"} +{"current_steps": 2725, "total_steps": 6252, "loss": 0.8995, "learning_rate": 9.099645475307468e-06, "epoch": 1.3075031488034548, "percentage": 43.59, "elapsed_time": "4:31:57", "remaining_time": "5:52:00"} +{"current_steps": 2730, "total_steps": 6252, "loss": 0.9768, "learning_rate": 9.089344564592659e-06, "epoch": 1.309902237149883, "percentage": 43.67, "elapsed_time": "4:32:18", "remaining_time": "5:51:18"} +{"current_steps": 2735, "total_steps": 6252, "loss": 0.8367, "learning_rate": 9.078990962644237e-06, "epoch": 1.3123013254963114, "percentage": 43.75, "elapsed_time": "4:32:38", "remaining_time": "5:50:35"} +{"current_steps": 2740, "total_steps": 6252, "loss": 0.9742, "learning_rate": 9.068584802868434e-06, "epoch": 1.3147004138427398, "percentage": 43.83, "elapsed_time": "4:33:00", "remaining_time": "5:49:56"} +{"current_steps": 2745, "total_steps": 6252, "loss": 0.8591, "learning_rate": 9.058126219348692e-06, "epoch": 1.317099502189168, "percentage": 43.91, "elapsed_time": "4:33:23", "remaining_time": "5:49:16"} +{"current_steps": 2750, "total_steps": 6252, "loss": 0.9576, "learning_rate": 9.047615346843938e-06, "epoch": 1.3194985905355965, "percentage": 43.99, "elapsed_time": "4:33:43", "remaining_time": "5:48:34"} +{"current_steps": 2755, "total_steps": 6252, "loss": 1.0105, "learning_rate": 9.037052320786833e-06, "epoch": 1.3218976788820247, "percentage": 44.07, "elapsed_time": "4:34:04", "remaining_time": "5:47:53"} +{"current_steps": 2760, "total_steps": 6252, "loss": 0.9007, "learning_rate": 9.026437277282044e-06, "epoch": 1.3242967672284531, "percentage": 44.15, "elapsed_time": "4:34:24", "remaining_time": "5:47:11"} +{"current_steps": 2765, "total_steps": 6252, "loss": 0.9398, "learning_rate": 9.015770353104482e-06, "epoch": 1.3266958555748816, "percentage": 44.23, "elapsed_time": "4:34:45", "remaining_time": "5:46:30"} +{"current_steps": 2770, "total_steps": 6252, "loss": 0.9709, "learning_rate": 9.005051685697544e-06, "epoch": 1.32909494392131, "percentage": 44.31, "elapsed_time": "4:35:06", "remaining_time": "5:45:49"} +{"current_steps": 2775, "total_steps": 6252, "loss": 0.8677, "learning_rate": 8.99428141317133e-06, "epoch": 1.3314940322677382, "percentage": 44.39, "elapsed_time": "4:35:28", "remaining_time": "5:45:09"} +{"current_steps": 2780, "total_steps": 6252, "loss": 0.8374, "learning_rate": 8.983459674300877e-06, "epoch": 1.3338931206141666, "percentage": 44.47, "elapsed_time": "4:35:49", "remaining_time": "5:44:29"} +{"current_steps": 2785, "total_steps": 6252, "loss": 0.8641, "learning_rate": 8.972586608524371e-06, "epoch": 1.3362922089605949, "percentage": 44.55, "elapsed_time": "4:36:10", "remaining_time": "5:43:47"} +{"current_steps": 2790, "total_steps": 6252, "loss": 0.9468, "learning_rate": 8.961662355941339e-06, "epoch": 1.3386912973070233, "percentage": 44.63, "elapsed_time": "4:36:29", "remaining_time": "5:43:05"} +{"current_steps": 2795, "total_steps": 6252, "loss": 0.9041, "learning_rate": 8.950687057310854e-06, "epoch": 1.3410903856534517, "percentage": 44.71, "elapsed_time": "4:36:49", "remaining_time": "5:42:23"} +{"current_steps": 2800, "total_steps": 6252, "loss": 0.9367, "learning_rate": 8.939660854049716e-06, "epoch": 1.3434894739998802, "percentage": 44.79, "elapsed_time": "4:37:08", "remaining_time": "5:41:40"} +{"current_steps": 2800, "total_steps": 6252, "eval_loss": 0.9589128494262695, "epoch": 1.3434894739998802, "percentage": 44.79, "elapsed_time": "4:40:15", "remaining_time": "5:45:30"} +{"current_steps": 2805, "total_steps": 6252, "loss": 0.9278, "learning_rate": 8.928583888230632e-06, "epoch": 1.3458885623463084, "percentage": 44.87, "elapsed_time": "4:41:10", "remaining_time": "5:45:31"} +{"current_steps": 2810, "total_steps": 6252, "loss": 0.8432, "learning_rate": 8.917456302580384e-06, "epoch": 1.3482876506927368, "percentage": 44.95, "elapsed_time": "4:41:31", "remaining_time": "5:44:50"} +{"current_steps": 2815, "total_steps": 6252, "loss": 0.8627, "learning_rate": 8.906278240477993e-06, "epoch": 1.350686739039165, "percentage": 45.03, "elapsed_time": "4:41:50", "remaining_time": "5:44:06"} +{"current_steps": 2820, "total_steps": 6252, "loss": 0.8152, "learning_rate": 8.895049845952868e-06, "epoch": 1.3530858273855935, "percentage": 45.11, "elapsed_time": "4:42:10", "remaining_time": "5:43:25"} +{"current_steps": 2825, "total_steps": 6252, "loss": 0.909, "learning_rate": 8.883771263682949e-06, "epoch": 1.355484915732022, "percentage": 45.19, "elapsed_time": "4:42:32", "remaining_time": "5:42:44"} +{"current_steps": 2830, "total_steps": 6252, "loss": 0.8528, "learning_rate": 8.872442638992853e-06, "epoch": 1.3578840040784501, "percentage": 45.27, "elapsed_time": "4:42:51", "remaining_time": "5:42:02"} +{"current_steps": 2835, "total_steps": 6252, "loss": 0.8544, "learning_rate": 8.861064117851987e-06, "epoch": 1.3602830924248785, "percentage": 45.35, "elapsed_time": "4:43:14", "remaining_time": "5:41:23"} +{"current_steps": 2840, "total_steps": 6252, "loss": 0.905, "learning_rate": 8.849635846872675e-06, "epoch": 1.362682180771307, "percentage": 45.43, "elapsed_time": "4:43:35", "remaining_time": "5:40:42"} +{"current_steps": 2845, "total_steps": 6252, "loss": 0.8494, "learning_rate": 8.83815797330827e-06, "epoch": 1.3650812691177352, "percentage": 45.51, "elapsed_time": "4:43:57", "remaining_time": "5:40:02"} +{"current_steps": 2850, "total_steps": 6252, "loss": 0.8055, "learning_rate": 8.826630645051254e-06, "epoch": 1.3674803574641636, "percentage": 45.59, "elapsed_time": "4:44:19", "remaining_time": "5:39:23"} +{"current_steps": 2855, "total_steps": 6252, "loss": 0.8326, "learning_rate": 8.815054010631336e-06, "epoch": 1.369879445810592, "percentage": 45.67, "elapsed_time": "4:44:39", "remaining_time": "5:38:42"} +{"current_steps": 2860, "total_steps": 6252, "loss": 0.8647, "learning_rate": 8.803428219213527e-06, "epoch": 1.3722785341570203, "percentage": 45.75, "elapsed_time": "4:44:59", "remaining_time": "5:38:00"} +{"current_steps": 2865, "total_steps": 6252, "loss": 0.9319, "learning_rate": 8.791753420596237e-06, "epoch": 1.3746776225034487, "percentage": 45.83, "elapsed_time": "4:45:20", "remaining_time": "5:37:19"} +{"current_steps": 2870, "total_steps": 6252, "loss": 0.9639, "learning_rate": 8.780029765209324e-06, "epoch": 1.377076710849877, "percentage": 45.91, "elapsed_time": "4:45:39", "remaining_time": "5:36:37"} +{"current_steps": 2875, "total_steps": 6252, "loss": 0.9156, "learning_rate": 8.768257404112175e-06, "epoch": 1.3794757991963054, "percentage": 45.99, "elapsed_time": "4:46:00", "remaining_time": "5:35:56"} +{"current_steps": 2880, "total_steps": 6252, "loss": 0.8767, "learning_rate": 8.756436488991743e-06, "epoch": 1.3818748875427338, "percentage": 46.07, "elapsed_time": "4:46:19", "remaining_time": "5:35:13"} +{"current_steps": 2885, "total_steps": 6252, "loss": 0.8061, "learning_rate": 8.744567172160601e-06, "epoch": 1.3842739758891622, "percentage": 46.15, "elapsed_time": "4:46:39", "remaining_time": "5:34:32"} +{"current_steps": 2890, "total_steps": 6252, "loss": 0.9058, "learning_rate": 8.732649606554983e-06, "epoch": 1.3866730642355904, "percentage": 46.23, "elapsed_time": "4:47:00", "remaining_time": "5:33:53"} +{"current_steps": 2895, "total_steps": 6252, "loss": 0.9113, "learning_rate": 8.720683945732807e-06, "epoch": 1.3890721525820189, "percentage": 46.31, "elapsed_time": "4:47:21", "remaining_time": "5:33:12"} +{"current_steps": 2900, "total_steps": 6252, "loss": 0.9146, "learning_rate": 8.708670343871697e-06, "epoch": 1.391471240928447, "percentage": 46.39, "elapsed_time": "4:47:41", "remaining_time": "5:32:32"} +{"current_steps": 2900, "total_steps": 6252, "eval_loss": 0.9569985866546631, "epoch": 1.391471240928447, "percentage": 46.39, "elapsed_time": "4:50:37", "remaining_time": "5:35:55"} +{"current_steps": 2905, "total_steps": 6252, "loss": 0.8575, "learning_rate": 8.696608955766995e-06, "epoch": 1.3938703292748755, "percentage": 46.47, "elapsed_time": "4:50:58", "remaining_time": "5:35:14"} +{"current_steps": 2910, "total_steps": 6252, "loss": 0.8904, "learning_rate": 8.684499936829773e-06, "epoch": 1.396269417621304, "percentage": 46.55, "elapsed_time": "4:51:17", "remaining_time": "5:34:32"} +{"current_steps": 2915, "total_steps": 6252, "loss": 0.8498, "learning_rate": 8.67234344308483e-06, "epoch": 1.3986685059677322, "percentage": 46.63, "elapsed_time": "4:51:37", "remaining_time": "5:33:50"} +{"current_steps": 2920, "total_steps": 6252, "loss": 0.9119, "learning_rate": 8.660139631168668e-06, "epoch": 1.4010675943141606, "percentage": 46.71, "elapsed_time": "4:51:57", "remaining_time": "5:33:09"} +{"current_steps": 2925, "total_steps": 6252, "loss": 0.9382, "learning_rate": 8.647888658327491e-06, "epoch": 1.403466682660589, "percentage": 46.79, "elapsed_time": "4:52:17", "remaining_time": "5:32:27"} +{"current_steps": 2930, "total_steps": 6252, "loss": 0.9829, "learning_rate": 8.635590682415172e-06, "epoch": 1.4058657710070173, "percentage": 46.87, "elapsed_time": "4:52:38", "remaining_time": "5:31:47"} +{"current_steps": 2935, "total_steps": 6252, "loss": 0.9363, "learning_rate": 8.623245861891217e-06, "epoch": 1.4082648593534457, "percentage": 46.94, "elapsed_time": "4:52:58", "remaining_time": "5:31:06"} +{"current_steps": 2940, "total_steps": 6252, "loss": 0.9634, "learning_rate": 8.610854355818727e-06, "epoch": 1.4106639476998741, "percentage": 47.02, "elapsed_time": "4:53:18", "remaining_time": "5:30:24"} +{"current_steps": 2945, "total_steps": 6252, "loss": 0.8603, "learning_rate": 8.598416323862344e-06, "epoch": 1.4130630360463023, "percentage": 47.1, "elapsed_time": "4:53:37", "remaining_time": "5:29:43"} +{"current_steps": 2950, "total_steps": 6252, "loss": 0.9382, "learning_rate": 8.585931926286197e-06, "epoch": 1.4154621243927308, "percentage": 47.18, "elapsed_time": "4:53:57", "remaining_time": "5:29:02"} +{"current_steps": 2955, "total_steps": 6252, "loss": 0.9435, "learning_rate": 8.573401323951838e-06, "epoch": 1.417861212739159, "percentage": 47.26, "elapsed_time": "4:54:17", "remaining_time": "5:28:21"} +{"current_steps": 2960, "total_steps": 6252, "loss": 0.9, "learning_rate": 8.560824678316166e-06, "epoch": 1.4202603010855874, "percentage": 47.34, "elapsed_time": "4:54:36", "remaining_time": "5:27:39"} +{"current_steps": 2965, "total_steps": 6252, "loss": 0.8678, "learning_rate": 8.548202151429351e-06, "epoch": 1.4226593894320159, "percentage": 47.42, "elapsed_time": "4:54:56", "remaining_time": "5:26:58"} +{"current_steps": 2970, "total_steps": 6252, "loss": 0.868, "learning_rate": 8.535533905932739e-06, "epoch": 1.4250584777784443, "percentage": 47.5, "elapsed_time": "4:55:18", "remaining_time": "5:26:19"} +{"current_steps": 2975, "total_steps": 6252, "loss": 0.9313, "learning_rate": 8.522820105056762e-06, "epoch": 1.4274575661248725, "percentage": 47.58, "elapsed_time": "4:55:39", "remaining_time": "5:25:39"} +{"current_steps": 2980, "total_steps": 6252, "loss": 0.861, "learning_rate": 8.510060912618836e-06, "epoch": 1.429856654471301, "percentage": 47.66, "elapsed_time": "4:56:00", "remaining_time": "5:25:01"} +{"current_steps": 2985, "total_steps": 6252, "loss": 0.8741, "learning_rate": 8.497256493021247e-06, "epoch": 1.4322557428177292, "percentage": 47.74, "elapsed_time": "4:56:20", "remaining_time": "5:24:20"} +{"current_steps": 2990, "total_steps": 6252, "loss": 0.9683, "learning_rate": 8.484407011249027e-06, "epoch": 1.4346548311641576, "percentage": 47.82, "elapsed_time": "4:56:40", "remaining_time": "5:23:39"} +{"current_steps": 2995, "total_steps": 6252, "loss": 0.8919, "learning_rate": 8.471512632867844e-06, "epoch": 1.437053919510586, "percentage": 47.9, "elapsed_time": "4:57:00", "remaining_time": "5:22:59"} +{"current_steps": 3000, "total_steps": 6252, "loss": 0.9697, "learning_rate": 8.458573524021854e-06, "epoch": 1.4394530078570145, "percentage": 47.98, "elapsed_time": "4:57:19", "remaining_time": "5:22:17"} +{"current_steps": 3000, "total_steps": 6252, "eval_loss": 0.9555841088294983, "epoch": 1.4394530078570145, "percentage": 47.98, "elapsed_time": "5:00:14", "remaining_time": "5:25:28"} +{"current_steps": 3005, "total_steps": 6252, "loss": 0.9467, "learning_rate": 8.445589851431563e-06, "epoch": 1.4418520962034427, "percentage": 48.06, "elapsed_time": "5:01:09", "remaining_time": "5:25:24"} +{"current_steps": 3010, "total_steps": 6252, "loss": 1.0304, "learning_rate": 8.432561782391687e-06, "epoch": 1.4442511845498711, "percentage": 48.14, "elapsed_time": "5:01:30", "remaining_time": "5:24:44"} +{"current_steps": 3015, "total_steps": 6252, "loss": 0.8586, "learning_rate": 8.419489484768988e-06, "epoch": 1.4466502728962993, "percentage": 48.22, "elapsed_time": "5:01:49", "remaining_time": "5:24:02"} +{"current_steps": 3020, "total_steps": 6252, "loss": 0.8946, "learning_rate": 8.406373127000111e-06, "epoch": 1.4490493612427278, "percentage": 48.3, "elapsed_time": "5:02:10", "remaining_time": "5:23:23"} +{"current_steps": 3025, "total_steps": 6252, "loss": 0.9761, "learning_rate": 8.393212878089418e-06, "epoch": 1.4514484495891562, "percentage": 48.38, "elapsed_time": "5:02:30", "remaining_time": "5:22:42"} +{"current_steps": 3030, "total_steps": 6252, "loss": 0.9166, "learning_rate": 8.380008907606814e-06, "epoch": 1.4538475379355844, "percentage": 48.46, "elapsed_time": "5:02:49", "remaining_time": "5:22:01"} +{"current_steps": 3035, "total_steps": 6252, "loss": 0.9467, "learning_rate": 8.366761385685547e-06, "epoch": 1.4562466262820128, "percentage": 48.54, "elapsed_time": "5:03:11", "remaining_time": "5:21:21"} +{"current_steps": 3040, "total_steps": 6252, "loss": 0.9424, "learning_rate": 8.353470483020032e-06, "epoch": 1.458645714628441, "percentage": 48.62, "elapsed_time": "5:03:30", "remaining_time": "5:20:40"} +{"current_steps": 3045, "total_steps": 6252, "loss": 0.9584, "learning_rate": 8.340136370863644e-06, "epoch": 1.4610448029748695, "percentage": 48.7, "elapsed_time": "5:03:50", "remaining_time": "5:20:00"} +{"current_steps": 3050, "total_steps": 6252, "loss": 0.9652, "learning_rate": 8.326759221026513e-06, "epoch": 1.463443891321298, "percentage": 48.78, "elapsed_time": "5:04:10", "remaining_time": "5:19:19"} +{"current_steps": 3055, "total_steps": 6252, "loss": 1.0062, "learning_rate": 8.31333920587331e-06, "epoch": 1.4658429796677264, "percentage": 48.86, "elapsed_time": "5:04:29", "remaining_time": "5:18:38"} +{"current_steps": 3060, "total_steps": 6252, "loss": 0.8903, "learning_rate": 8.299876498321022e-06, "epoch": 1.4682420680141546, "percentage": 48.94, "elapsed_time": "5:04:48", "remaining_time": "5:17:57"} +{"current_steps": 3065, "total_steps": 6252, "loss": 0.8911, "learning_rate": 8.286371271836734e-06, "epoch": 1.470641156360583, "percentage": 49.02, "elapsed_time": "5:05:08", "remaining_time": "5:17:17"} +{"current_steps": 3070, "total_steps": 6252, "loss": 0.8508, "learning_rate": 8.272823700435382e-06, "epoch": 1.4730402447070112, "percentage": 49.1, "elapsed_time": "5:05:29", "remaining_time": "5:16:38"} +{"current_steps": 3075, "total_steps": 6252, "loss": 0.9078, "learning_rate": 8.259233958677522e-06, "epoch": 1.4754393330534397, "percentage": 49.18, "elapsed_time": "5:05:48", "remaining_time": "5:15:57"} +{"current_steps": 3080, "total_steps": 6252, "loss": 0.9197, "learning_rate": 8.245602221667069e-06, "epoch": 1.477838421399868, "percentage": 49.26, "elapsed_time": "5:06:08", "remaining_time": "5:15:17"} +{"current_steps": 3085, "total_steps": 6252, "loss": 0.8263, "learning_rate": 8.231928665049057e-06, "epoch": 1.4802375097462965, "percentage": 49.34, "elapsed_time": "5:06:29", "remaining_time": "5:14:38"} +{"current_steps": 3090, "total_steps": 6252, "loss": 0.9468, "learning_rate": 8.218213465007352e-06, "epoch": 1.4826365980927247, "percentage": 49.42, "elapsed_time": "5:06:51", "remaining_time": "5:14:00"} +{"current_steps": 3095, "total_steps": 6252, "loss": 0.9964, "learning_rate": 8.204456798262408e-06, "epoch": 1.4850356864391532, "percentage": 49.5, "elapsed_time": "5:07:13", "remaining_time": "5:13:22"} +{"current_steps": 3100, "total_steps": 6252, "loss": 0.8713, "learning_rate": 8.190658842068973e-06, "epoch": 1.4874347747855814, "percentage": 49.58, "elapsed_time": "5:07:33", "remaining_time": "5:12:43"} +{"current_steps": 3100, "total_steps": 6252, "eval_loss": 0.9542006850242615, "epoch": 1.4874347747855814, "percentage": 49.58, "elapsed_time": "5:10:29", "remaining_time": "5:15:41"} +{"current_steps": 3105, "total_steps": 6252, "loss": 0.9638, "learning_rate": 8.176819774213807e-06, "epoch": 1.4898338631320098, "percentage": 49.66, "elapsed_time": "5:10:49", "remaining_time": "5:15:01"} +{"current_steps": 3110, "total_steps": 6252, "loss": 0.889, "learning_rate": 8.162939773013404e-06, "epoch": 1.4922329514784383, "percentage": 49.74, "elapsed_time": "5:11:08", "remaining_time": "5:14:21"} +{"current_steps": 3115, "total_steps": 6252, "loss": 0.8743, "learning_rate": 8.14901901731167e-06, "epoch": 1.4946320398248665, "percentage": 49.82, "elapsed_time": "5:11:29", "remaining_time": "5:13:41"} +{"current_steps": 3120, "total_steps": 6252, "loss": 0.911, "learning_rate": 8.135057686477644e-06, "epoch": 1.497031128171295, "percentage": 49.9, "elapsed_time": "5:11:50", "remaining_time": "5:13:02"} +{"current_steps": 3125, "total_steps": 6252, "loss": 0.8063, "learning_rate": 8.121055960403172e-06, "epoch": 1.4994302165177233, "percentage": 49.98, "elapsed_time": "5:12:10", "remaining_time": "5:12:22"} +{"current_steps": 3130, "total_steps": 6252, "loss": 0.8361, "learning_rate": 8.107014019500593e-06, "epoch": 1.5018293048641516, "percentage": 50.06, "elapsed_time": "5:12:29", "remaining_time": "5:11:41"} +{"current_steps": 3135, "total_steps": 6252, "loss": 0.8645, "learning_rate": 8.092932044700416e-06, "epoch": 1.50422839321058, "percentage": 50.14, "elapsed_time": "5:12:48", "remaining_time": "5:11:01"} +{"current_steps": 3140, "total_steps": 6252, "loss": 0.9313, "learning_rate": 8.078810217448986e-06, "epoch": 1.5066274815570084, "percentage": 50.22, "elapsed_time": "5:13:10", "remaining_time": "5:10:23"} +{"current_steps": 3145, "total_steps": 6252, "loss": 0.8725, "learning_rate": 8.064648719706145e-06, "epoch": 1.5090265699034366, "percentage": 50.3, "elapsed_time": "5:13:31", "remaining_time": "5:09:44"} +{"current_steps": 3150, "total_steps": 6252, "loss": 0.9236, "learning_rate": 8.050447733942892e-06, "epoch": 1.511425658249865, "percentage": 50.38, "elapsed_time": "5:13:53", "remaining_time": "5:09:06"} +{"current_steps": 3155, "total_steps": 6252, "loss": 0.8835, "learning_rate": 8.03620744313903e-06, "epoch": 1.5138247465962933, "percentage": 50.46, "elapsed_time": "5:14:12", "remaining_time": "5:08:25"} +{"current_steps": 3160, "total_steps": 6252, "loss": 0.9518, "learning_rate": 8.021928030780806e-06, "epoch": 1.5162238349427217, "percentage": 50.54, "elapsed_time": "5:14:31", "remaining_time": "5:07:45"} +{"current_steps": 3165, "total_steps": 6252, "loss": 0.9473, "learning_rate": 8.00760968085855e-06, "epoch": 1.5186229232891502, "percentage": 50.62, "elapsed_time": "5:14:51", "remaining_time": "5:07:06"} +{"current_steps": 3170, "total_steps": 6252, "loss": 0.8956, "learning_rate": 7.993252577864302e-06, "epoch": 1.5210220116355786, "percentage": 50.7, "elapsed_time": "5:15:11", "remaining_time": "5:06:26"} +{"current_steps": 3175, "total_steps": 6252, "loss": 0.9128, "learning_rate": 7.978856906789433e-06, "epoch": 1.5234210999820068, "percentage": 50.78, "elapsed_time": "5:15:31", "remaining_time": "5:05:47"} +{"current_steps": 3180, "total_steps": 6252, "loss": 0.8885, "learning_rate": 7.964422853122268e-06, "epoch": 1.5258201883284352, "percentage": 50.86, "elapsed_time": "5:15:53", "remaining_time": "5:05:09"} +{"current_steps": 3185, "total_steps": 6252, "loss": 0.9026, "learning_rate": 7.949950602845692e-06, "epoch": 1.5282192766748635, "percentage": 50.94, "elapsed_time": "5:16:13", "remaining_time": "5:04:30"} +{"current_steps": 3190, "total_steps": 6252, "loss": 0.9181, "learning_rate": 7.935440342434751e-06, "epoch": 1.530618365021292, "percentage": 51.02, "elapsed_time": "5:16:32", "remaining_time": "5:03:50"} +{"current_steps": 3195, "total_steps": 6252, "loss": 0.9653, "learning_rate": 7.920892258854252e-06, "epoch": 1.5330174533677203, "percentage": 51.1, "elapsed_time": "5:16:53", "remaining_time": "5:03:12"} +{"current_steps": 3200, "total_steps": 6252, "loss": 0.9855, "learning_rate": 7.906306539556354e-06, "epoch": 1.5354165417141488, "percentage": 51.18, "elapsed_time": "5:17:14", "remaining_time": "5:02:34"} +{"current_steps": 3200, "total_steps": 6252, "eval_loss": 0.9524497985839844, "epoch": 1.5354165417141488, "percentage": 51.18, "elapsed_time": "5:20:10", "remaining_time": "5:05:21"} +{"current_steps": 3205, "total_steps": 6252, "loss": 0.9054, "learning_rate": 7.891683372478157e-06, "epoch": 1.537815630060577, "percentage": 51.26, "elapsed_time": "5:21:05", "remaining_time": "5:05:16"} +{"current_steps": 3210, "total_steps": 6252, "loss": 0.7991, "learning_rate": 7.87702294603927e-06, "epoch": 1.5402147184070052, "percentage": 51.34, "elapsed_time": "5:21:25", "remaining_time": "5:04:36"} +{"current_steps": 3215, "total_steps": 6252, "loss": 0.9486, "learning_rate": 7.86232544913939e-06, "epoch": 1.5426138067534336, "percentage": 51.42, "elapsed_time": "5:21:44", "remaining_time": "5:03:55"} +{"current_steps": 3220, "total_steps": 6252, "loss": 0.8998, "learning_rate": 7.847591071155871e-06, "epoch": 1.545012895099862, "percentage": 51.5, "elapsed_time": "5:22:04", "remaining_time": "5:03:16"} +{"current_steps": 3225, "total_steps": 6252, "loss": 0.9656, "learning_rate": 7.832820001941274e-06, "epoch": 1.5474119834462905, "percentage": 51.58, "elapsed_time": "5:22:23", "remaining_time": "5:02:36"} +{"current_steps": 3230, "total_steps": 6252, "loss": 0.842, "learning_rate": 7.818012431820935e-06, "epoch": 1.549811071792719, "percentage": 51.66, "elapsed_time": "5:22:43", "remaining_time": "5:01:56"} +{"current_steps": 3235, "total_steps": 6252, "loss": 0.9687, "learning_rate": 7.803168551590496e-06, "epoch": 1.5522101601391471, "percentage": 51.74, "elapsed_time": "5:23:03", "remaining_time": "5:01:17"} +{"current_steps": 3240, "total_steps": 6252, "loss": 0.9853, "learning_rate": 7.788288552513459e-06, "epoch": 1.5546092484855754, "percentage": 51.82, "elapsed_time": "5:23:25", "remaining_time": "5:00:40"} +{"current_steps": 3245, "total_steps": 6252, "loss": 0.915, "learning_rate": 7.773372626318719e-06, "epoch": 1.5570083368320038, "percentage": 51.9, "elapsed_time": "5:23:45", "remaining_time": "5:00:00"} +{"current_steps": 3250, "total_steps": 6252, "loss": 0.8403, "learning_rate": 7.758420965198087e-06, "epoch": 1.5594074251784322, "percentage": 51.98, "elapsed_time": "5:24:03", "remaining_time": "4:59:20"} +{"current_steps": 3255, "total_steps": 6252, "loss": 0.8819, "learning_rate": 7.743433761803826e-06, "epoch": 1.5618065135248607, "percentage": 52.06, "elapsed_time": "5:24:24", "remaining_time": "4:58:42"} +{"current_steps": 3260, "total_steps": 6252, "loss": 0.857, "learning_rate": 7.728411209246156e-06, "epoch": 1.5642056018712889, "percentage": 52.14, "elapsed_time": "5:24:44", "remaining_time": "4:58:03"} +{"current_steps": 3265, "total_steps": 6252, "loss": 0.8918, "learning_rate": 7.713353501090773e-06, "epoch": 1.5666046902177173, "percentage": 52.22, "elapsed_time": "5:25:05", "remaining_time": "4:57:24"} +{"current_steps": 3270, "total_steps": 6252, "loss": 0.8965, "learning_rate": 7.698260831356352e-06, "epoch": 1.5690037785641455, "percentage": 52.3, "elapsed_time": "5:25:26", "remaining_time": "4:56:46"} +{"current_steps": 3275, "total_steps": 6252, "loss": 0.8654, "learning_rate": 7.683133394512053e-06, "epoch": 1.571402866910574, "percentage": 52.38, "elapsed_time": "5:25:51", "remaining_time": "4:56:12"} +{"current_steps": 3280, "total_steps": 6252, "loss": 0.9612, "learning_rate": 7.667971385475002e-06, "epoch": 1.5738019552570024, "percentage": 52.46, "elapsed_time": "5:26:11", "remaining_time": "4:55:33"} +{"current_steps": 3285, "total_steps": 6252, "loss": 0.952, "learning_rate": 7.652774999607794e-06, "epoch": 1.5762010436034308, "percentage": 52.54, "elapsed_time": "5:26:30", "remaining_time": "4:54:54"} +{"current_steps": 3290, "total_steps": 6252, "loss": 0.8155, "learning_rate": 7.63754443271597e-06, "epoch": 1.578600131949859, "percentage": 52.62, "elapsed_time": "5:26:51", "remaining_time": "4:54:16"} +{"current_steps": 3295, "total_steps": 6252, "loss": 0.9594, "learning_rate": 7.622279881045489e-06, "epoch": 1.5809992202962873, "percentage": 52.7, "elapsed_time": "5:27:14", "remaining_time": "4:53:40"} +{"current_steps": 3300, "total_steps": 6252, "loss": 0.8651, "learning_rate": 7.606981541280212e-06, "epoch": 1.5833983086427157, "percentage": 52.78, "elapsed_time": "5:27:32", "remaining_time": "4:53:00"} +{"current_steps": 3300, "total_steps": 6252, "eval_loss": 0.9511102437973022, "epoch": 1.5833983086427157, "percentage": 52.78, "elapsed_time": "5:30:28", "remaining_time": "4:55:37"} +{"current_steps": 3305, "total_steps": 6252, "loss": 0.9834, "learning_rate": 7.591649610539349e-06, "epoch": 1.5857973969891441, "percentage": 52.86, "elapsed_time": "5:30:49", "remaining_time": "4:54:59"} +{"current_steps": 3310, "total_steps": 6252, "loss": 1.0254, "learning_rate": 7.57628428637494e-06, "epoch": 1.5881964853355726, "percentage": 52.94, "elapsed_time": "5:31:11", "remaining_time": "4:54:22"} +{"current_steps": 3315, "total_steps": 6252, "loss": 0.8831, "learning_rate": 7.560885766769295e-06, "epoch": 1.590595573682001, "percentage": 53.02, "elapsed_time": "5:31:31", "remaining_time": "4:53:43"} +{"current_steps": 3320, "total_steps": 6252, "loss": 0.9003, "learning_rate": 7.5454542501324445e-06, "epoch": 1.5929946620284292, "percentage": 53.1, "elapsed_time": "5:31:51", "remaining_time": "4:53:04"} +{"current_steps": 3325, "total_steps": 6252, "loss": 0.8892, "learning_rate": 7.529989935299595e-06, "epoch": 1.5953937503748574, "percentage": 53.18, "elapsed_time": "5:32:10", "remaining_time": "4:52:25"} +{"current_steps": 3330, "total_steps": 6252, "loss": 0.9812, "learning_rate": 7.514493021528548e-06, "epoch": 1.5977928387212859, "percentage": 53.26, "elapsed_time": "5:32:32", "remaining_time": "4:51:47"} +{"current_steps": 3335, "total_steps": 6252, "loss": 0.9269, "learning_rate": 7.498963708497149e-06, "epoch": 1.6001919270677143, "percentage": 53.34, "elapsed_time": "5:32:52", "remaining_time": "4:51:08"} +{"current_steps": 3340, "total_steps": 6252, "loss": 0.8783, "learning_rate": 7.483402196300705e-06, "epoch": 1.6025910154141427, "percentage": 53.42, "elapsed_time": "5:33:11", "remaining_time": "4:50:29"} +{"current_steps": 3345, "total_steps": 6252, "loss": 0.8795, "learning_rate": 7.467808685449413e-06, "epoch": 1.604990103760571, "percentage": 53.5, "elapsed_time": "5:33:30", "remaining_time": "4:49:50"} +{"current_steps": 3350, "total_steps": 6252, "loss": 0.9221, "learning_rate": 7.452183376865768e-06, "epoch": 1.6073891921069994, "percentage": 53.58, "elapsed_time": "5:33:49", "remaining_time": "4:49:11"} +{"current_steps": 3355, "total_steps": 6252, "loss": 1.0129, "learning_rate": 7.436526471881982e-06, "epoch": 1.6097882804534276, "percentage": 53.66, "elapsed_time": "5:34:10", "remaining_time": "4:48:33"} +{"current_steps": 3360, "total_steps": 6252, "loss": 0.9056, "learning_rate": 7.420838172237388e-06, "epoch": 1.612187368799856, "percentage": 53.74, "elapsed_time": "5:34:31", "remaining_time": "4:47:55"} +{"current_steps": 3365, "total_steps": 6252, "loss": 0.8635, "learning_rate": 7.405118680075835e-06, "epoch": 1.6145864571462845, "percentage": 53.82, "elapsed_time": "5:34:52", "remaining_time": "4:47:18"} +{"current_steps": 3370, "total_steps": 6252, "loss": 0.8995, "learning_rate": 7.389368197943092e-06, "epoch": 1.616985545492713, "percentage": 53.9, "elapsed_time": "5:35:11", "remaining_time": "4:46:38"} +{"current_steps": 3375, "total_steps": 6252, "loss": 0.8698, "learning_rate": 7.373586928784234e-06, "epoch": 1.619384633839141, "percentage": 53.98, "elapsed_time": "5:35:32", "remaining_time": "4:46:01"} +{"current_steps": 3380, "total_steps": 6252, "loss": 0.922, "learning_rate": 7.357775075941025e-06, "epoch": 1.6217837221855693, "percentage": 54.06, "elapsed_time": "5:35:53", "remaining_time": "4:45:24"} +{"current_steps": 3385, "total_steps": 6252, "loss": 0.9133, "learning_rate": 7.341932843149298e-06, "epoch": 1.6241828105319978, "percentage": 54.14, "elapsed_time": "5:36:13", "remaining_time": "4:44:46"} +{"current_steps": 3390, "total_steps": 6252, "loss": 0.8743, "learning_rate": 7.326060434536337e-06, "epoch": 1.6265818988784262, "percentage": 54.22, "elapsed_time": "5:36:34", "remaining_time": "4:44:09"} +{"current_steps": 3395, "total_steps": 6252, "loss": 0.8689, "learning_rate": 7.31015805461824e-06, "epoch": 1.6289809872248546, "percentage": 54.3, "elapsed_time": "5:36:54", "remaining_time": "4:43:31"} +{"current_steps": 3400, "total_steps": 6252, "loss": 0.9448, "learning_rate": 7.294225908297281e-06, "epoch": 1.631380075571283, "percentage": 54.38, "elapsed_time": "5:37:13", "remaining_time": "4:42:52"} +{"current_steps": 3400, "total_steps": 6252, "eval_loss": 0.9495499730110168, "epoch": 1.631380075571283, "percentage": 54.38, "elapsed_time": "5:40:10", "remaining_time": "4:45:20"} +{"current_steps": 3405, "total_steps": 6252, "loss": 0.9375, "learning_rate": 7.278264200859281e-06, "epoch": 1.6337791639177113, "percentage": 54.46, "elapsed_time": "5:41:04", "remaining_time": "4:45:11"} +{"current_steps": 3410, "total_steps": 6252, "loss": 0.9227, "learning_rate": 7.262273137970953e-06, "epoch": 1.6361782522641395, "percentage": 54.54, "elapsed_time": "5:41:25", "remaining_time": "4:44:33"} +{"current_steps": 3415, "total_steps": 6252, "loss": 0.811, "learning_rate": 7.246252925677253e-06, "epoch": 1.638577340610568, "percentage": 54.62, "elapsed_time": "5:41:47", "remaining_time": "4:43:56"} +{"current_steps": 3420, "total_steps": 6252, "loss": 1.0199, "learning_rate": 7.230203770398734e-06, "epoch": 1.6409764289569964, "percentage": 54.7, "elapsed_time": "5:42:07", "remaining_time": "4:43:17"} +{"current_steps": 3425, "total_steps": 6252, "loss": 0.8974, "learning_rate": 7.21412587892887e-06, "epoch": 1.6433755173034248, "percentage": 54.78, "elapsed_time": "5:42:27", "remaining_time": "4:42:39"} +{"current_steps": 3430, "total_steps": 6252, "loss": 0.9508, "learning_rate": 7.19801945843141e-06, "epoch": 1.645774605649853, "percentage": 54.86, "elapsed_time": "5:42:45", "remaining_time": "4:42:00"} +{"current_steps": 3435, "total_steps": 6252, "loss": 0.9031, "learning_rate": 7.181884716437694e-06, "epoch": 1.6481736939962814, "percentage": 54.94, "elapsed_time": "5:43:06", "remaining_time": "4:41:22"} +{"current_steps": 3440, "total_steps": 6252, "loss": 0.8852, "learning_rate": 7.165721860843987e-06, "epoch": 1.6505727823427097, "percentage": 55.02, "elapsed_time": "5:43:26", "remaining_time": "4:40:44"} +{"current_steps": 3445, "total_steps": 6252, "loss": 0.8157, "learning_rate": 7.149531099908799e-06, "epoch": 1.652971870689138, "percentage": 55.1, "elapsed_time": "5:43:46", "remaining_time": "4:40:06"} +{"current_steps": 3450, "total_steps": 6252, "loss": 0.9073, "learning_rate": 7.1333126422501965e-06, "epoch": 1.6553709590355665, "percentage": 55.18, "elapsed_time": "5:44:06", "remaining_time": "4:39:28"} +{"current_steps": 3455, "total_steps": 6252, "loss": 0.9776, "learning_rate": 7.1170666968431225e-06, "epoch": 1.657770047381995, "percentage": 55.26, "elapsed_time": "5:44:27", "remaining_time": "4:38:51"} +{"current_steps": 3460, "total_steps": 6252, "loss": 0.9031, "learning_rate": 7.100793473016699e-06, "epoch": 1.6601691357284232, "percentage": 55.34, "elapsed_time": "5:44:46", "remaining_time": "4:38:12"} +{"current_steps": 3465, "total_steps": 6252, "loss": 0.872, "learning_rate": 7.084493180451529e-06, "epoch": 1.6625682240748516, "percentage": 55.42, "elapsed_time": "5:45:06", "remaining_time": "4:37:34"} +{"current_steps": 3470, "total_steps": 6252, "loss": 0.937, "learning_rate": 7.068166029176996e-06, "epoch": 1.6649673124212798, "percentage": 55.5, "elapsed_time": "5:45:27", "remaining_time": "4:36:57"} +{"current_steps": 3475, "total_steps": 6252, "loss": 0.8244, "learning_rate": 7.051812229568562e-06, "epoch": 1.6673664007677083, "percentage": 55.58, "elapsed_time": "5:45:49", "remaining_time": "4:36:21"} +{"current_steps": 3480, "total_steps": 6252, "loss": 0.8413, "learning_rate": 7.035431992345051e-06, "epoch": 1.6697654891141367, "percentage": 55.66, "elapsed_time": "5:46:10", "remaining_time": "4:35:44"} +{"current_steps": 3485, "total_steps": 6252, "loss": 0.917, "learning_rate": 7.019025528565933e-06, "epoch": 1.6721645774605651, "percentage": 55.74, "elapsed_time": "5:46:30", "remaining_time": "4:35:06"} +{"current_steps": 3490, "total_steps": 6252, "loss": 0.8301, "learning_rate": 7.002593049628611e-06, "epoch": 1.6745636658069933, "percentage": 55.82, "elapsed_time": "5:46:51", "remaining_time": "4:34:30"} +{"current_steps": 3495, "total_steps": 6252, "loss": 0.917, "learning_rate": 6.986134767265693e-06, "epoch": 1.6769627541534216, "percentage": 55.9, "elapsed_time": "5:47:12", "remaining_time": "4:33:53"} +{"current_steps": 3500, "total_steps": 6252, "loss": 0.8997, "learning_rate": 6.969650893542261e-06, "epoch": 1.67936184249985, "percentage": 55.98, "elapsed_time": "5:47:33", "remaining_time": "4:33:16"} +{"current_steps": 3500, "total_steps": 6252, "eval_loss": 0.9484797120094299, "epoch": 1.67936184249985, "percentage": 55.98, "elapsed_time": "5:50:29", "remaining_time": "4:35:34"} +{"current_steps": 3505, "total_steps": 6252, "loss": 0.7639, "learning_rate": 6.9531416408531475e-06, "epoch": 1.6817609308462784, "percentage": 56.06, "elapsed_time": "5:50:48", "remaining_time": "4:34:56"} +{"current_steps": 3510, "total_steps": 6252, "loss": 0.8797, "learning_rate": 6.936607221920188e-06, "epoch": 1.6841600191927069, "percentage": 56.14, "elapsed_time": "5:51:08", "remaining_time": "4:34:18"} +{"current_steps": 3515, "total_steps": 6252, "loss": 0.7968, "learning_rate": 6.920047849789488e-06, "epoch": 1.6865591075391353, "percentage": 56.22, "elapsed_time": "5:51:28", "remaining_time": "4:33:40"} +{"current_steps": 3520, "total_steps": 6252, "loss": 0.9295, "learning_rate": 6.903463737828675e-06, "epoch": 1.6889581958855635, "percentage": 56.3, "elapsed_time": "5:51:49", "remaining_time": "4:33:03"} +{"current_steps": 3525, "total_steps": 6252, "loss": 0.8382, "learning_rate": 6.886855099724148e-06, "epoch": 1.6913572842319917, "percentage": 56.38, "elapsed_time": "5:52:10", "remaining_time": "4:32:27"} +{"current_steps": 3530, "total_steps": 6252, "loss": 0.931, "learning_rate": 6.870222149478326e-06, "epoch": 1.6937563725784202, "percentage": 56.46, "elapsed_time": "5:52:32", "remaining_time": "4:31:50"} +{"current_steps": 3535, "total_steps": 6252, "loss": 0.9034, "learning_rate": 6.853565101406891e-06, "epoch": 1.6961554609248486, "percentage": 56.54, "elapsed_time": "5:52:52", "remaining_time": "4:31:12"} +{"current_steps": 3540, "total_steps": 6252, "loss": 0.881, "learning_rate": 6.836884170136026e-06, "epoch": 1.698554549271277, "percentage": 56.62, "elapsed_time": "5:53:12", "remaining_time": "4:30:35"} +{"current_steps": 3545, "total_steps": 6252, "loss": 0.8059, "learning_rate": 6.8201795705996465e-06, "epoch": 1.7009536376177052, "percentage": 56.7, "elapsed_time": "5:53:31", "remaining_time": "4:29:57"} +{"current_steps": 3550, "total_steps": 6252, "loss": 0.7942, "learning_rate": 6.8034515180366366e-06, "epoch": 1.7033527259641337, "percentage": 56.78, "elapsed_time": "5:53:51", "remaining_time": "4:29:19"} +{"current_steps": 3555, "total_steps": 6252, "loss": 0.8774, "learning_rate": 6.786700227988072e-06, "epoch": 1.7057518143105619, "percentage": 56.86, "elapsed_time": "5:54:11", "remaining_time": "4:28:42"} +{"current_steps": 3560, "total_steps": 6252, "loss": 0.8572, "learning_rate": 6.7699259162944445e-06, "epoch": 1.7081509026569903, "percentage": 56.94, "elapsed_time": "5:54:31", "remaining_time": "4:28:05"} +{"current_steps": 3565, "total_steps": 6252, "loss": 0.9758, "learning_rate": 6.753128799092875e-06, "epoch": 1.7105499910034188, "percentage": 57.02, "elapsed_time": "5:54:51", "remaining_time": "4:27:27"} +{"current_steps": 3570, "total_steps": 6252, "loss": 0.9013, "learning_rate": 6.7363090928143414e-06, "epoch": 1.7129490793498472, "percentage": 57.1, "elapsed_time": "5:55:11", "remaining_time": "4:26:50"} +{"current_steps": 3575, "total_steps": 6252, "loss": 0.9169, "learning_rate": 6.719467014180876e-06, "epoch": 1.7153481676962754, "percentage": 57.18, "elapsed_time": "5:55:32", "remaining_time": "4:26:14"} +{"current_steps": 3580, "total_steps": 6252, "loss": 0.7857, "learning_rate": 6.702602780202779e-06, "epoch": 1.7177472560427036, "percentage": 57.26, "elapsed_time": "5:55:54", "remaining_time": "4:25:38"} +{"current_steps": 3585, "total_steps": 6252, "loss": 0.9271, "learning_rate": 6.68571660817583e-06, "epoch": 1.720146344389132, "percentage": 57.34, "elapsed_time": "5:56:15", "remaining_time": "4:25:02"} +{"current_steps": 3590, "total_steps": 6252, "loss": 0.9313, "learning_rate": 6.66880871567847e-06, "epoch": 1.7225454327355605, "percentage": 57.42, "elapsed_time": "5:56:36", "remaining_time": "4:24:25"} +{"current_steps": 3595, "total_steps": 6252, "loss": 0.9542, "learning_rate": 6.651879320569015e-06, "epoch": 1.724944521081989, "percentage": 57.5, "elapsed_time": "5:56:56", "remaining_time": "4:23:48"} +{"current_steps": 3600, "total_steps": 6252, "loss": 1.0446, "learning_rate": 6.634928640982841e-06, "epoch": 1.7273436094284174, "percentage": 57.58, "elapsed_time": "5:57:15", "remaining_time": "4:23:10"} +{"current_steps": 3600, "total_steps": 6252, "eval_loss": 0.9475127458572388, "epoch": 1.7273436094284174, "percentage": 57.58, "elapsed_time": "6:00:11", "remaining_time": "4:25:20"} +{"current_steps": 3605, "total_steps": 6252, "loss": 0.8341, "learning_rate": 6.617956895329574e-06, "epoch": 1.7297426977748456, "percentage": 57.66, "elapsed_time": "6:01:06", "remaining_time": "4:25:09"} +{"current_steps": 3610, "total_steps": 6252, "loss": 0.8448, "learning_rate": 6.600964302290275e-06, "epoch": 1.7321417861212738, "percentage": 57.74, "elapsed_time": "6:01:27", "remaining_time": "4:24:32"} +{"current_steps": 3615, "total_steps": 6252, "loss": 0.887, "learning_rate": 6.5839510808146276e-06, "epoch": 1.7345408744677022, "percentage": 57.82, "elapsed_time": "6:01:47", "remaining_time": "4:23:54"} +{"current_steps": 3620, "total_steps": 6252, "loss": 0.9268, "learning_rate": 6.566917450118109e-06, "epoch": 1.7369399628141307, "percentage": 57.9, "elapsed_time": "6:02:07", "remaining_time": "4:23:17"} +{"current_steps": 3625, "total_steps": 6252, "loss": 0.873, "learning_rate": 6.549863629679174e-06, "epoch": 1.739339051160559, "percentage": 57.98, "elapsed_time": "6:02:29", "remaining_time": "4:22:41"} +{"current_steps": 3630, "total_steps": 6252, "loss": 0.8447, "learning_rate": 6.532789839236417e-06, "epoch": 1.7417381395069873, "percentage": 58.06, "elapsed_time": "6:02:49", "remaining_time": "4:22:04"} +{"current_steps": 3635, "total_steps": 6252, "loss": 0.9165, "learning_rate": 6.5156962987857485e-06, "epoch": 1.7441372278534157, "percentage": 58.14, "elapsed_time": "6:03:09", "remaining_time": "4:21:27"} +{"current_steps": 3640, "total_steps": 6252, "loss": 0.8892, "learning_rate": 6.498583228577559e-06, "epoch": 1.746536316199844, "percentage": 58.22, "elapsed_time": "6:03:30", "remaining_time": "4:20:50"} +{"current_steps": 3645, "total_steps": 6252, "loss": 0.8452, "learning_rate": 6.48145084911388e-06, "epoch": 1.7489354045462724, "percentage": 58.3, "elapsed_time": "6:03:51", "remaining_time": "4:20:14"} +{"current_steps": 3650, "total_steps": 6252, "loss": 0.8913, "learning_rate": 6.464299381145539e-06, "epoch": 1.7513344928927008, "percentage": 58.38, "elapsed_time": "6:04:12", "remaining_time": "4:19:38"} +{"current_steps": 3655, "total_steps": 6252, "loss": 0.9104, "learning_rate": 6.4471290456693245e-06, "epoch": 1.7537335812391293, "percentage": 58.46, "elapsed_time": "6:04:33", "remaining_time": "4:19:02"} +{"current_steps": 3660, "total_steps": 6252, "loss": 0.8567, "learning_rate": 6.429940063925129e-06, "epoch": 1.7561326695855575, "percentage": 58.54, "elapsed_time": "6:04:55", "remaining_time": "4:18:25"} +{"current_steps": 3665, "total_steps": 6252, "loss": 0.8169, "learning_rate": 6.412732657393104e-06, "epoch": 1.7585317579319857, "percentage": 58.62, "elapsed_time": "6:05:14", "remaining_time": "4:17:48"} +{"current_steps": 3670, "total_steps": 6252, "loss": 0.7973, "learning_rate": 6.395507047790807e-06, "epoch": 1.7609308462784141, "percentage": 58.7, "elapsed_time": "6:05:36", "remaining_time": "4:17:13"} +{"current_steps": 3675, "total_steps": 6252, "loss": 0.9667, "learning_rate": 6.378263457070334e-06, "epoch": 1.7633299346248426, "percentage": 58.78, "elapsed_time": "6:05:56", "remaining_time": "4:16:36"} +{"current_steps": 3680, "total_steps": 6252, "loss": 0.9165, "learning_rate": 6.361002107415478e-06, "epoch": 1.765729022971271, "percentage": 58.86, "elapsed_time": "6:06:15", "remaining_time": "4:15:58"} +{"current_steps": 3685, "total_steps": 6252, "loss": 0.8751, "learning_rate": 6.34372322123885e-06, "epoch": 1.7681281113176994, "percentage": 58.94, "elapsed_time": "6:06:35", "remaining_time": "4:15:22"} +{"current_steps": 3690, "total_steps": 6252, "loss": 0.9498, "learning_rate": 6.32642702117902e-06, "epoch": 1.7705271996641276, "percentage": 59.02, "elapsed_time": "6:06:54", "remaining_time": "4:14:44"} +{"current_steps": 3695, "total_steps": 6252, "loss": 0.8921, "learning_rate": 6.309113730097647e-06, "epoch": 1.7729262880105559, "percentage": 59.1, "elapsed_time": "6:07:14", "remaining_time": "4:14:08"} +{"current_steps": 3700, "total_steps": 6252, "loss": 0.8862, "learning_rate": 6.291783571076612e-06, "epoch": 1.7753253763569843, "percentage": 59.18, "elapsed_time": "6:07:33", "remaining_time": "4:13:31"} +{"current_steps": 3700, "total_steps": 6252, "eval_loss": 0.9464648365974426, "epoch": 1.7753253763569843, "percentage": 59.18, "elapsed_time": "6:10:29", "remaining_time": "4:15:32"} +{"current_steps": 3705, "total_steps": 6252, "loss": 0.9401, "learning_rate": 6.274436767415133e-06, "epoch": 1.7777244647034127, "percentage": 59.26, "elapsed_time": "6:10:50", "remaining_time": "4:14:56"} +{"current_steps": 3710, "total_steps": 6252, "loss": 0.9079, "learning_rate": 6.257073542626899e-06, "epoch": 1.7801235530498412, "percentage": 59.34, "elapsed_time": "6:11:11", "remaining_time": "4:14:19"} +{"current_steps": 3715, "total_steps": 6252, "loss": 0.8473, "learning_rate": 6.239694120437186e-06, "epoch": 1.7825226413962694, "percentage": 59.42, "elapsed_time": "6:11:30", "remaining_time": "4:13:42"} +{"current_steps": 3720, "total_steps": 6252, "loss": 0.867, "learning_rate": 6.2222987247799705e-06, "epoch": 1.7849217297426978, "percentage": 59.5, "elapsed_time": "6:11:52", "remaining_time": "4:13:07"} +{"current_steps": 3725, "total_steps": 6252, "loss": 0.8493, "learning_rate": 6.204887579795046e-06, "epoch": 1.787320818089126, "percentage": 59.58, "elapsed_time": "6:12:13", "remaining_time": "4:12:30"} +{"current_steps": 3730, "total_steps": 6252, "loss": 0.8569, "learning_rate": 6.187460909825142e-06, "epoch": 1.7897199064355545, "percentage": 59.66, "elapsed_time": "6:12:31", "remaining_time": "4:11:53"} +{"current_steps": 3735, "total_steps": 6252, "loss": 0.8716, "learning_rate": 6.170018939413024e-06, "epoch": 1.7921189947819829, "percentage": 59.74, "elapsed_time": "6:12:51", "remaining_time": "4:11:15"} +{"current_steps": 3740, "total_steps": 6252, "loss": 1.0129, "learning_rate": 6.152561893298601e-06, "epoch": 1.7945180831284113, "percentage": 59.82, "elapsed_time": "6:13:12", "remaining_time": "4:10:40"} +{"current_steps": 3745, "total_steps": 6252, "loss": 0.8712, "learning_rate": 6.135089996416039e-06, "epoch": 1.7969171714748395, "percentage": 59.9, "elapsed_time": "6:13:33", "remaining_time": "4:10:04"} +{"current_steps": 3750, "total_steps": 6252, "loss": 0.9311, "learning_rate": 6.1176034738908515e-06, "epoch": 1.799316259821268, "percentage": 59.98, "elapsed_time": "6:13:53", "remaining_time": "4:09:27"} +{"current_steps": 3755, "total_steps": 6252, "loss": 0.948, "learning_rate": 6.100102551037003e-06, "epoch": 1.8017153481676962, "percentage": 60.06, "elapsed_time": "6:14:14", "remaining_time": "4:08:51"} +{"current_steps": 3760, "total_steps": 6252, "loss": 0.956, "learning_rate": 6.082587453354012e-06, "epoch": 1.8041144365141246, "percentage": 60.14, "elapsed_time": "6:14:34", "remaining_time": "4:08:15"} +{"current_steps": 3765, "total_steps": 6252, "loss": 0.9149, "learning_rate": 6.065058406524033e-06, "epoch": 1.806513524860553, "percentage": 60.22, "elapsed_time": "6:14:55", "remaining_time": "4:07:39"} +{"current_steps": 3770, "total_steps": 6252, "loss": 0.8932, "learning_rate": 6.047515636408959e-06, "epoch": 1.8089126132069815, "percentage": 60.3, "elapsed_time": "6:15:16", "remaining_time": "4:07:03"} +{"current_steps": 3775, "total_steps": 6252, "loss": 0.7662, "learning_rate": 6.029959369047507e-06, "epoch": 1.8113117015534097, "percentage": 60.38, "elapsed_time": "6:15:37", "remaining_time": "4:06:28"} +{"current_steps": 3780, "total_steps": 6252, "loss": 0.9215, "learning_rate": 6.012389830652307e-06, "epoch": 1.813710789899838, "percentage": 60.46, "elapsed_time": "6:15:58", "remaining_time": "4:05:52"} +{"current_steps": 3785, "total_steps": 6252, "loss": 0.8813, "learning_rate": 5.994807247606984e-06, "epoch": 1.8161098782462664, "percentage": 60.54, "elapsed_time": "6:16:19", "remaining_time": "4:05:17"} +{"current_steps": 3790, "total_steps": 6252, "loss": 0.8829, "learning_rate": 5.977211846463243e-06, "epoch": 1.8185089665926948, "percentage": 60.62, "elapsed_time": "6:16:40", "remaining_time": "4:04:41"} +{"current_steps": 3795, "total_steps": 6252, "loss": 1.0723, "learning_rate": 5.959603853937958e-06, "epoch": 1.8209080549391232, "percentage": 60.7, "elapsed_time": "6:17:00", "remaining_time": "4:04:04"} +{"current_steps": 3800, "total_steps": 6252, "loss": 0.873, "learning_rate": 5.941983496910232e-06, "epoch": 1.8233071432855517, "percentage": 60.78, "elapsed_time": "6:17:22", "remaining_time": "4:03:30"} +{"current_steps": 3800, "total_steps": 6252, "eval_loss": 0.9455747008323669, "epoch": 1.8233071432855517, "percentage": 60.78, "elapsed_time": "6:20:18", "remaining_time": "4:05:23"} +{"current_steps": 3805, "total_steps": 6252, "loss": 0.9247, "learning_rate": 5.924351002418489e-06, "epoch": 1.8257062316319799, "percentage": 60.86, "elapsed_time": "6:21:12", "remaining_time": "4:05:09"} +{"current_steps": 3810, "total_steps": 6252, "loss": 0.9389, "learning_rate": 5.90670659765755e-06, "epoch": 1.828105319978408, "percentage": 60.94, "elapsed_time": "6:21:33", "remaining_time": "4:04:33"} +{"current_steps": 3815, "total_steps": 6252, "loss": 0.8573, "learning_rate": 5.889050509975692e-06, "epoch": 1.8305044083248365, "percentage": 61.02, "elapsed_time": "6:21:54", "remaining_time": "4:03:57"} +{"current_steps": 3820, "total_steps": 6252, "loss": 0.8662, "learning_rate": 5.8713829668717295e-06, "epoch": 1.832903496671265, "percentage": 61.1, "elapsed_time": "6:22:13", "remaining_time": "4:03:20"} +{"current_steps": 3825, "total_steps": 6252, "loss": 0.9179, "learning_rate": 5.853704195992082e-06, "epoch": 1.8353025850176934, "percentage": 61.18, "elapsed_time": "6:22:33", "remaining_time": "4:02:44"} +{"current_steps": 3830, "total_steps": 6252, "loss": 0.7961, "learning_rate": 5.836014425127835e-06, "epoch": 1.8377016733641216, "percentage": 61.26, "elapsed_time": "6:22:53", "remaining_time": "4:02:08"} +{"current_steps": 3835, "total_steps": 6252, "loss": 0.8975, "learning_rate": 5.8183138822118125e-06, "epoch": 1.84010076171055, "percentage": 61.34, "elapsed_time": "6:23:13", "remaining_time": "4:01:31"} +{"current_steps": 3840, "total_steps": 6252, "loss": 0.8728, "learning_rate": 5.800602795315633e-06, "epoch": 1.8424998500569783, "percentage": 61.42, "elapsed_time": "6:23:35", "remaining_time": "4:00:56"} +{"current_steps": 3845, "total_steps": 6252, "loss": 1.0257, "learning_rate": 5.7828813926467795e-06, "epoch": 1.8448989384034067, "percentage": 61.5, "elapsed_time": "6:23:55", "remaining_time": "4:00:20"} +{"current_steps": 3850, "total_steps": 6252, "loss": 0.8953, "learning_rate": 5.765149902545649e-06, "epoch": 1.8472980267498351, "percentage": 61.58, "elapsed_time": "6:24:15", "remaining_time": "3:59:44"} +{"current_steps": 3855, "total_steps": 6252, "loss": 0.8241, "learning_rate": 5.747408553482616e-06, "epoch": 1.8496971150962636, "percentage": 61.66, "elapsed_time": "6:24:34", "remaining_time": "3:59:07"} +{"current_steps": 3860, "total_steps": 6252, "loss": 0.9077, "learning_rate": 5.729657574055089e-06, "epoch": 1.8520962034426918, "percentage": 61.74, "elapsed_time": "6:24:53", "remaining_time": "3:58:31"} +{"current_steps": 3865, "total_steps": 6252, "loss": 0.9028, "learning_rate": 5.711897192984567e-06, "epoch": 1.85449529178912, "percentage": 61.82, "elapsed_time": "6:25:15", "remaining_time": "3:57:56"} +{"current_steps": 3870, "total_steps": 6252, "loss": 0.8912, "learning_rate": 5.694127639113679e-06, "epoch": 1.8568943801355484, "percentage": 61.9, "elapsed_time": "6:25:34", "remaining_time": "3:57:19"} +{"current_steps": 3875, "total_steps": 6252, "loss": 0.8446, "learning_rate": 5.676349141403257e-06, "epoch": 1.8592934684819769, "percentage": 61.98, "elapsed_time": "6:25:54", "remaining_time": "3:56:43"} +{"current_steps": 3880, "total_steps": 6252, "loss": 0.7482, "learning_rate": 5.658561928929368e-06, "epoch": 1.8616925568284053, "percentage": 62.06, "elapsed_time": "6:26:15", "remaining_time": "3:56:08"} +{"current_steps": 3885, "total_steps": 6252, "loss": 0.9638, "learning_rate": 5.6407662308803704e-06, "epoch": 1.8640916451748337, "percentage": 62.14, "elapsed_time": "6:26:36", "remaining_time": "3:55:32"} +{"current_steps": 3890, "total_steps": 6252, "loss": 0.8948, "learning_rate": 5.62296227655396e-06, "epoch": 1.866490733521262, "percentage": 62.22, "elapsed_time": "6:26:57", "remaining_time": "3:54:57"} +{"current_steps": 3895, "total_steps": 6252, "loss": 0.8241, "learning_rate": 5.605150295354214e-06, "epoch": 1.8688898218676901, "percentage": 62.3, "elapsed_time": "6:27:19", "remaining_time": "3:54:23"} +{"current_steps": 3900, "total_steps": 6252, "loss": 0.9893, "learning_rate": 5.5873305167886334e-06, "epoch": 1.8712889102141186, "percentage": 62.38, "elapsed_time": "6:27:40", "remaining_time": "3:53:47"} +{"current_steps": 3900, "total_steps": 6252, "eval_loss": 0.944765031337738, "epoch": 1.8712889102141186, "percentage": 62.38, "elapsed_time": "6:30:36", "remaining_time": "3:55:33"} +{"current_steps": 3905, "total_steps": 6252, "loss": 0.9387, "learning_rate": 5.569503170465196e-06, "epoch": 1.873687998560547, "percentage": 62.46, "elapsed_time": "6:30:58", "remaining_time": "3:54:59"} +{"current_steps": 3910, "total_steps": 6252, "loss": 0.8305, "learning_rate": 5.55166848608938e-06, "epoch": 1.8760870869069755, "percentage": 62.54, "elapsed_time": "6:31:19", "remaining_time": "3:54:23"} +{"current_steps": 3915, "total_steps": 6252, "loss": 0.8884, "learning_rate": 5.533826693461224e-06, "epoch": 1.8784861752534037, "percentage": 62.62, "elapsed_time": "6:31:41", "remaining_time": "3:53:48"} +{"current_steps": 3920, "total_steps": 6252, "loss": 0.8486, "learning_rate": 5.515978022472349e-06, "epoch": 1.880885263599832, "percentage": 62.7, "elapsed_time": "6:32:04", "remaining_time": "3:53:14"} +{"current_steps": 3925, "total_steps": 6252, "loss": 0.9519, "learning_rate": 5.498122703103009e-06, "epoch": 1.8832843519462603, "percentage": 62.78, "elapsed_time": "6:32:23", "remaining_time": "3:52:37"} +{"current_steps": 3930, "total_steps": 6252, "loss": 0.9153, "learning_rate": 5.48026096541912e-06, "epoch": 1.8856834402926888, "percentage": 62.86, "elapsed_time": "6:32:44", "remaining_time": "3:52:02"} +{"current_steps": 3935, "total_steps": 6252, "loss": 0.7888, "learning_rate": 5.462393039569296e-06, "epoch": 1.8880825286391172, "percentage": 62.94, "elapsed_time": "6:33:04", "remaining_time": "3:51:27"} +{"current_steps": 3940, "total_steps": 6252, "loss": 0.8447, "learning_rate": 5.44451915578189e-06, "epoch": 1.8904816169855456, "percentage": 63.02, "elapsed_time": "6:33:25", "remaining_time": "3:50:51"} +{"current_steps": 3945, "total_steps": 6252, "loss": 0.9121, "learning_rate": 5.42663954436202e-06, "epoch": 1.8928807053319738, "percentage": 63.1, "elapsed_time": "6:33:47", "remaining_time": "3:50:16"} +{"current_steps": 3950, "total_steps": 6252, "loss": 0.9036, "learning_rate": 5.408754435688605e-06, "epoch": 1.895279793678402, "percentage": 63.18, "elapsed_time": "6:34:08", "remaining_time": "3:49:42"} +{"current_steps": 3955, "total_steps": 6252, "loss": 0.8647, "learning_rate": 5.390864060211399e-06, "epoch": 1.8976788820248305, "percentage": 63.26, "elapsed_time": "6:34:30", "remaining_time": "3:49:07"} +{"current_steps": 3960, "total_steps": 6252, "loss": 0.8347, "learning_rate": 5.372968648448015e-06, "epoch": 1.900077970371259, "percentage": 63.34, "elapsed_time": "6:34:48", "remaining_time": "3:48:30"} +{"current_steps": 3965, "total_steps": 6252, "loss": 0.8615, "learning_rate": 5.35506843098096e-06, "epoch": 1.9024770587176874, "percentage": 63.42, "elapsed_time": "6:35:09", "remaining_time": "3:47:55"} +{"current_steps": 3970, "total_steps": 6252, "loss": 0.815, "learning_rate": 5.337163638454661e-06, "epoch": 1.9048761470641158, "percentage": 63.5, "elapsed_time": "6:35:29", "remaining_time": "3:47:20"} +{"current_steps": 3975, "total_steps": 6252, "loss": 0.9842, "learning_rate": 5.3192545015724995e-06, "epoch": 1.907275235410544, "percentage": 63.58, "elapsed_time": "6:35:49", "remaining_time": "3:46:44"} +{"current_steps": 3980, "total_steps": 6252, "loss": 1.0199, "learning_rate": 5.301341251093828e-06, "epoch": 1.9096743237569722, "percentage": 63.66, "elapsed_time": "6:36:09", "remaining_time": "3:46:08"} +{"current_steps": 3985, "total_steps": 6252, "loss": 0.9157, "learning_rate": 5.2834241178310065e-06, "epoch": 1.9120734121034006, "percentage": 63.74, "elapsed_time": "6:36:28", "remaining_time": "3:45:32"} +{"current_steps": 3990, "total_steps": 6252, "loss": 0.9769, "learning_rate": 5.265503332646425e-06, "epoch": 1.914472500449829, "percentage": 63.82, "elapsed_time": "6:36:47", "remaining_time": "3:44:56"} +{"current_steps": 3995, "total_steps": 6252, "loss": 0.8583, "learning_rate": 5.247579126449525e-06, "epoch": 1.9168715887962575, "percentage": 63.9, "elapsed_time": "6:37:05", "remaining_time": "3:44:20"} +{"current_steps": 4000, "total_steps": 6252, "loss": 0.8915, "learning_rate": 5.22965173019383e-06, "epoch": 1.9192706771426857, "percentage": 63.98, "elapsed_time": "6:37:26", "remaining_time": "3:43:45"} +{"current_steps": 4000, "total_steps": 6252, "eval_loss": 0.9442155361175537, "epoch": 1.9192706771426857, "percentage": 63.98, "elapsed_time": "6:40:23", "remaining_time": "3:45:25"} +{"current_steps": 4005, "total_steps": 6252, "loss": 0.8223, "learning_rate": 5.211721374873969e-06, "epoch": 1.9216697654891142, "percentage": 64.06, "elapsed_time": "6:41:19", "remaining_time": "3:45:09"} +{"current_steps": 4010, "total_steps": 6252, "loss": 0.9664, "learning_rate": 5.193788291522698e-06, "epoch": 1.9240688538355424, "percentage": 64.14, "elapsed_time": "6:41:40", "remaining_time": "3:44:34"} +{"current_steps": 4015, "total_steps": 6252, "loss": 0.958, "learning_rate": 5.1758527112079194e-06, "epoch": 1.9264679421819708, "percentage": 64.22, "elapsed_time": "6:42:01", "remaining_time": "3:43:59"} +{"current_steps": 4020, "total_steps": 6252, "loss": 0.8964, "learning_rate": 5.157914865029715e-06, "epoch": 1.9288670305283993, "percentage": 64.3, "elapsed_time": "6:42:23", "remaining_time": "3:43:24"} +{"current_steps": 4025, "total_steps": 6252, "loss": 1.014, "learning_rate": 5.13997498411736e-06, "epoch": 1.9312661188748277, "percentage": 64.38, "elapsed_time": "6:42:41", "remaining_time": "3:42:48"} +{"current_steps": 4030, "total_steps": 6252, "loss": 0.8947, "learning_rate": 5.122033299626344e-06, "epoch": 1.933665207221256, "percentage": 64.46, "elapsed_time": "6:43:01", "remaining_time": "3:42:12"} +{"current_steps": 4035, "total_steps": 6252, "loss": 0.8083, "learning_rate": 5.104090042735399e-06, "epoch": 1.9360642955676843, "percentage": 64.54, "elapsed_time": "6:43:23", "remaining_time": "3:41:38"} +{"current_steps": 4040, "total_steps": 6252, "loss": 0.8151, "learning_rate": 5.08614544464352e-06, "epoch": 1.9384633839141125, "percentage": 64.62, "elapsed_time": "6:43:42", "remaining_time": "3:41:02"} +{"current_steps": 4045, "total_steps": 6252, "loss": 1.0128, "learning_rate": 5.068199736566976e-06, "epoch": 1.940862472260541, "percentage": 64.7, "elapsed_time": "6:44:02", "remaining_time": "3:40:27"} +{"current_steps": 4050, "total_steps": 6252, "loss": 0.9116, "learning_rate": 5.0502531497363435e-06, "epoch": 1.9432615606069694, "percentage": 64.78, "elapsed_time": "6:44:22", "remaining_time": "3:39:51"} +{"current_steps": 4055, "total_steps": 6252, "loss": 0.9195, "learning_rate": 5.0323059153935235e-06, "epoch": 1.9456606489533979, "percentage": 64.86, "elapsed_time": "6:44:42", "remaining_time": "3:39:15"} +{"current_steps": 4060, "total_steps": 6252, "loss": 0.8837, "learning_rate": 5.014358264788755e-06, "epoch": 1.948059737299826, "percentage": 64.94, "elapsed_time": "6:45:02", "remaining_time": "3:38:40"} +{"current_steps": 4065, "total_steps": 6252, "loss": 0.9059, "learning_rate": 4.996410429177645e-06, "epoch": 1.9504588256462543, "percentage": 65.02, "elapsed_time": "6:45:22", "remaining_time": "3:38:05"} +{"current_steps": 4070, "total_steps": 6252, "loss": 0.9118, "learning_rate": 4.9784626398181775e-06, "epoch": 1.9528579139926827, "percentage": 65.1, "elapsed_time": "6:45:43", "remaining_time": "3:37:30"} +{"current_steps": 4075, "total_steps": 6252, "loss": 0.8492, "learning_rate": 4.96051512796775e-06, "epoch": 1.9552570023391111, "percentage": 65.18, "elapsed_time": "6:46:04", "remaining_time": "3:36:56"} +{"current_steps": 4080, "total_steps": 6252, "loss": 0.9743, "learning_rate": 4.9425681248801756e-06, "epoch": 1.9576560906855396, "percentage": 65.26, "elapsed_time": "6:46:23", "remaining_time": "3:36:20"} +{"current_steps": 4085, "total_steps": 6252, "loss": 0.8697, "learning_rate": 4.924621861802721e-06, "epoch": 1.9600551790319678, "percentage": 65.34, "elapsed_time": "6:46:42", "remaining_time": "3:35:45"} +{"current_steps": 4090, "total_steps": 6252, "loss": 0.8178, "learning_rate": 4.906676569973107e-06, "epoch": 1.9624542673783962, "percentage": 65.42, "elapsed_time": "6:47:03", "remaining_time": "3:35:10"} +{"current_steps": 4095, "total_steps": 6252, "loss": 0.8874, "learning_rate": 4.88873248061655e-06, "epoch": 1.9648533557248244, "percentage": 65.5, "elapsed_time": "6:47:22", "remaining_time": "3:34:34"} +{"current_steps": 4100, "total_steps": 6252, "loss": 0.8854, "learning_rate": 4.870789824942766e-06, "epoch": 1.9672524440712529, "percentage": 65.58, "elapsed_time": "6:47:42", "remaining_time": "3:33:59"} +{"current_steps": 4100, "total_steps": 6252, "eval_loss": 0.9435391426086426, "epoch": 1.9672524440712529, "percentage": 65.58, "elapsed_time": "6:50:37", "remaining_time": "3:35:31"} +{"current_steps": 4105, "total_steps": 6252, "loss": 0.9725, "learning_rate": 4.852848834143002e-06, "epoch": 1.9696515324176813, "percentage": 65.66, "elapsed_time": "6:50:56", "remaining_time": "3:34:56"} +{"current_steps": 4110, "total_steps": 6252, "loss": 0.8971, "learning_rate": 4.834909739387048e-06, "epoch": 1.9720506207641098, "percentage": 65.74, "elapsed_time": "6:51:15", "remaining_time": "3:34:20"} +{"current_steps": 4115, "total_steps": 6252, "loss": 0.7883, "learning_rate": 4.8169727718202695e-06, "epoch": 1.974449709110538, "percentage": 65.82, "elapsed_time": "6:51:35", "remaining_time": "3:33:45"} +{"current_steps": 4120, "total_steps": 6252, "loss": 0.9476, "learning_rate": 4.799038162560619e-06, "epoch": 1.9768487974569664, "percentage": 65.9, "elapsed_time": "6:51:55", "remaining_time": "3:33:09"} +{"current_steps": 4125, "total_steps": 6252, "loss": 0.9393, "learning_rate": 4.781106142695664e-06, "epoch": 1.9792478858033946, "percentage": 65.98, "elapsed_time": "6:52:15", "remaining_time": "3:32:34"} +{"current_steps": 4130, "total_steps": 6252, "loss": 0.8465, "learning_rate": 4.763176943279608e-06, "epoch": 1.981646974149823, "percentage": 66.06, "elapsed_time": "6:52:36", "remaining_time": "3:31:59"} +{"current_steps": 4135, "total_steps": 6252, "loss": 0.8959, "learning_rate": 4.745250795330311e-06, "epoch": 1.9840460624962515, "percentage": 66.14, "elapsed_time": "6:52:56", "remaining_time": "3:31:24"} +{"current_steps": 4140, "total_steps": 6252, "loss": 0.8703, "learning_rate": 4.727327929826318e-06, "epoch": 1.98644515084268, "percentage": 66.22, "elapsed_time": "6:53:18", "remaining_time": "3:30:50"} +{"current_steps": 4145, "total_steps": 6252, "loss": 0.9591, "learning_rate": 4.709408577703875e-06, "epoch": 1.9888442391891081, "percentage": 66.3, "elapsed_time": "6:53:39", "remaining_time": "3:30:16"} +{"current_steps": 4150, "total_steps": 6252, "loss": 0.8204, "learning_rate": 4.691492969853963e-06, "epoch": 1.9912433275355363, "percentage": 66.38, "elapsed_time": "6:54:01", "remaining_time": "3:29:42"} +{"current_steps": 4155, "total_steps": 6252, "loss": 0.9007, "learning_rate": 4.673581337119313e-06, "epoch": 1.9936424158819648, "percentage": 66.46, "elapsed_time": "6:54:23", "remaining_time": "3:29:08"} +{"current_steps": 4160, "total_steps": 6252, "loss": 0.8965, "learning_rate": 4.655673910291442e-06, "epoch": 1.9960415042283932, "percentage": 66.54, "elapsed_time": "6:54:44", "remaining_time": "3:28:33"} +{"current_steps": 4165, "total_steps": 6252, "loss": 0.88, "learning_rate": 4.637770920107669e-06, "epoch": 1.9984405925748217, "percentage": 66.62, "elapsed_time": "6:55:06", "remaining_time": "3:28:00"} +{"current_steps": 4170, "total_steps": 6252, "loss": 0.9135, "learning_rate": 4.619872597248153e-06, "epoch": 2.00083968092125, "percentage": 66.7, "elapsed_time": "6:55:27", "remaining_time": "3:27:25"} +{"current_steps": 4175, "total_steps": 6252, "loss": 0.8235, "learning_rate": 4.6019791723329055e-06, "epoch": 2.003238769267678, "percentage": 66.78, "elapsed_time": "6:55:47", "remaining_time": "3:26:50"} +{"current_steps": 4180, "total_steps": 6252, "loss": 0.8495, "learning_rate": 4.584090875918837e-06, "epoch": 2.0056378576141065, "percentage": 66.86, "elapsed_time": "6:56:07", "remaining_time": "3:26:16"} +{"current_steps": 4185, "total_steps": 6252, "loss": 0.8506, "learning_rate": 4.56620793849677e-06, "epoch": 2.008036945960535, "percentage": 66.94, "elapsed_time": "6:56:28", "remaining_time": "3:25:42"} +{"current_steps": 4190, "total_steps": 6252, "loss": 0.8355, "learning_rate": 4.5483305904884826e-06, "epoch": 2.0104360343069634, "percentage": 67.02, "elapsed_time": "6:56:49", "remaining_time": "3:25:07"} +{"current_steps": 4195, "total_steps": 6252, "loss": 0.9317, "learning_rate": 4.530459062243726e-06, "epoch": 2.012835122653392, "percentage": 67.1, "elapsed_time": "6:57:10", "remaining_time": "3:24:33"} +{"current_steps": 4200, "total_steps": 6252, "loss": 0.7608, "learning_rate": 4.512593584037274e-06, "epoch": 2.0152342109998203, "percentage": 67.18, "elapsed_time": "6:57:30", "remaining_time": "3:23:58"} +{"current_steps": 4200, "total_steps": 6252, "eval_loss": 0.9447470307350159, "epoch": 2.0152342109998203, "percentage": 67.18, "elapsed_time": "7:00:26", "remaining_time": "3:25:24"} +{"current_steps": 4205, "total_steps": 6252, "loss": 0.8606, "learning_rate": 4.494734386065933e-06, "epoch": 2.0176332993462482, "percentage": 67.26, "elapsed_time": "7:01:20", "remaining_time": "3:25:06"} +{"current_steps": 4210, "total_steps": 6252, "loss": 0.9198, "learning_rate": 4.476881698445601e-06, "epoch": 2.0200323876926767, "percentage": 67.34, "elapsed_time": "7:01:41", "remaining_time": "3:24:32"} +{"current_steps": 4215, "total_steps": 6252, "loss": 0.8639, "learning_rate": 4.45903575120828e-06, "epoch": 2.022431476039105, "percentage": 67.42, "elapsed_time": "7:02:02", "remaining_time": "3:23:57"} +{"current_steps": 4220, "total_steps": 6252, "loss": 0.7841, "learning_rate": 4.441196774299129e-06, "epoch": 2.0248305643855335, "percentage": 67.5, "elapsed_time": "7:02:21", "remaining_time": "3:23:22"} +{"current_steps": 4225, "total_steps": 6252, "loss": 0.8384, "learning_rate": 4.423364997573489e-06, "epoch": 2.027229652731962, "percentage": 67.58, "elapsed_time": "7:02:42", "remaining_time": "3:22:47"} +{"current_steps": 4230, "total_steps": 6252, "loss": 0.8485, "learning_rate": 4.405540650793931e-06, "epoch": 2.0296287410783904, "percentage": 67.66, "elapsed_time": "7:03:03", "remaining_time": "3:22:13"} +{"current_steps": 4235, "total_steps": 6252, "loss": 0.785, "learning_rate": 4.387723963627288e-06, "epoch": 2.0320278294248184, "percentage": 67.74, "elapsed_time": "7:03:21", "remaining_time": "3:21:38"} +{"current_steps": 4240, "total_steps": 6252, "loss": 0.7982, "learning_rate": 4.369915165641701e-06, "epoch": 2.034426917771247, "percentage": 67.82, "elapsed_time": "7:03:41", "remaining_time": "3:21:03"} +{"current_steps": 4245, "total_steps": 6252, "loss": 0.8574, "learning_rate": 4.352114486303657e-06, "epoch": 2.0368260061176753, "percentage": 67.9, "elapsed_time": "7:04:03", "remaining_time": "3:20:29"} +{"current_steps": 4250, "total_steps": 6252, "loss": 0.8414, "learning_rate": 4.334322154975037e-06, "epoch": 2.0392250944641037, "percentage": 67.98, "elapsed_time": "7:04:25", "remaining_time": "3:19:55"} +{"current_steps": 4255, "total_steps": 6252, "loss": 0.8034, "learning_rate": 4.3165384009101535e-06, "epoch": 2.041624182810532, "percentage": 68.06, "elapsed_time": "7:04:46", "remaining_time": "3:19:21"} +{"current_steps": 4260, "total_steps": 6252, "loss": 0.8283, "learning_rate": 4.298763453252805e-06, "epoch": 2.04402327115696, "percentage": 68.14, "elapsed_time": "7:05:05", "remaining_time": "3:18:46"} +{"current_steps": 4265, "total_steps": 6252, "loss": 0.6966, "learning_rate": 4.280997541033315e-06, "epoch": 2.0464223595033886, "percentage": 68.22, "elapsed_time": "7:05:26", "remaining_time": "3:18:12"} +{"current_steps": 4270, "total_steps": 6252, "loss": 0.8893, "learning_rate": 4.263240893165592e-06, "epoch": 2.048821447849817, "percentage": 68.3, "elapsed_time": "7:05:47", "remaining_time": "3:17:38"} +{"current_steps": 4275, "total_steps": 6252, "loss": 0.8797, "learning_rate": 4.2454937384441665e-06, "epoch": 2.0512205361962454, "percentage": 68.38, "elapsed_time": "7:06:08", "remaining_time": "3:17:04"} +{"current_steps": 4280, "total_steps": 6252, "loss": 0.8327, "learning_rate": 4.227756305541253e-06, "epoch": 2.053619624542674, "percentage": 68.46, "elapsed_time": "7:06:27", "remaining_time": "3:16:29"} +{"current_steps": 4285, "total_steps": 6252, "loss": 0.8423, "learning_rate": 4.210028823003802e-06, "epoch": 2.0560187128891023, "percentage": 68.54, "elapsed_time": "7:06:49", "remaining_time": "3:15:55"} +{"current_steps": 4290, "total_steps": 6252, "loss": 0.8146, "learning_rate": 4.192311519250548e-06, "epoch": 2.0584178012355303, "percentage": 68.62, "elapsed_time": "7:07:09", "remaining_time": "3:15:21"} +{"current_steps": 4295, "total_steps": 6252, "loss": 0.8386, "learning_rate": 4.174604622569076e-06, "epoch": 2.0608168895819587, "percentage": 68.7, "elapsed_time": "7:07:30", "remaining_time": "3:14:47"} +{"current_steps": 4300, "total_steps": 6252, "loss": 0.796, "learning_rate": 4.156908361112876e-06, "epoch": 2.063215977928387, "percentage": 68.78, "elapsed_time": "7:07:53", "remaining_time": "3:14:14"} +{"current_steps": 4300, "total_steps": 6252, "eval_loss": 0.9463717937469482, "epoch": 2.063215977928387, "percentage": 68.78, "elapsed_time": "7:10:48", "remaining_time": "3:15:34"} +{"current_steps": 4305, "total_steps": 6252, "loss": 0.7608, "learning_rate": 4.139222962898401e-06, "epoch": 2.0656150662748156, "percentage": 68.86, "elapsed_time": "7:11:10", "remaining_time": "3:15:00"} +{"current_steps": 4310, "total_steps": 6252, "loss": 0.8912, "learning_rate": 4.121548655802132e-06, "epoch": 2.068014154621244, "percentage": 68.94, "elapsed_time": "7:11:30", "remaining_time": "3:14:25"} +{"current_steps": 4315, "total_steps": 6252, "loss": 0.7804, "learning_rate": 4.103885667557642e-06, "epoch": 2.0704132429676725, "percentage": 69.02, "elapsed_time": "7:11:51", "remaining_time": "3:13:51"} +{"current_steps": 4320, "total_steps": 6252, "loss": 0.876, "learning_rate": 4.086234225752657e-06, "epoch": 2.0728123313141005, "percentage": 69.1, "elapsed_time": "7:12:12", "remaining_time": "3:13:17"} +{"current_steps": 4325, "total_steps": 6252, "loss": 0.7589, "learning_rate": 4.068594557826132e-06, "epoch": 2.075211419660529, "percentage": 69.18, "elapsed_time": "7:12:32", "remaining_time": "3:12:42"} +{"current_steps": 4330, "total_steps": 6252, "loss": 0.8852, "learning_rate": 4.0509668910653114e-06, "epoch": 2.0776105080069573, "percentage": 69.26, "elapsed_time": "7:12:52", "remaining_time": "3:12:08"} +{"current_steps": 4335, "total_steps": 6252, "loss": 0.9057, "learning_rate": 4.033351452602807e-06, "epoch": 2.080009596353386, "percentage": 69.34, "elapsed_time": "7:13:11", "remaining_time": "3:11:33"} +{"current_steps": 4340, "total_steps": 6252, "loss": 0.8005, "learning_rate": 4.0157484694136645e-06, "epoch": 2.082408684699814, "percentage": 69.42, "elapsed_time": "7:13:32", "remaining_time": "3:10:59"} +{"current_steps": 4345, "total_steps": 6252, "loss": 0.8047, "learning_rate": 3.998158168312453e-06, "epoch": 2.0848077730462427, "percentage": 69.5, "elapsed_time": "7:13:54", "remaining_time": "3:10:26"} +{"current_steps": 4350, "total_steps": 6252, "loss": 0.7325, "learning_rate": 3.98058077595032e-06, "epoch": 2.0872068613926706, "percentage": 69.58, "elapsed_time": "7:14:14", "remaining_time": "3:09:52"} +{"current_steps": 4355, "total_steps": 6252, "loss": 0.7172, "learning_rate": 3.9630165188120945e-06, "epoch": 2.089605949739099, "percentage": 69.66, "elapsed_time": "7:14:33", "remaining_time": "3:09:17"} +{"current_steps": 4360, "total_steps": 6252, "loss": 0.776, "learning_rate": 3.945465623213352e-06, "epoch": 2.0920050380855275, "percentage": 69.74, "elapsed_time": "7:14:52", "remaining_time": "3:08:42"} +{"current_steps": 4365, "total_steps": 6252, "loss": 0.8868, "learning_rate": 3.927928315297508e-06, "epoch": 2.094404126431956, "percentage": 69.82, "elapsed_time": "7:15:12", "remaining_time": "3:08:08"} +{"current_steps": 4370, "total_steps": 6252, "loss": 0.9293, "learning_rate": 3.9104048210328965e-06, "epoch": 2.0968032147783844, "percentage": 69.9, "elapsed_time": "7:15:32", "remaining_time": "3:07:34"} +{"current_steps": 4375, "total_steps": 6252, "loss": 0.7971, "learning_rate": 3.892895366209867e-06, "epoch": 2.0992023031248124, "percentage": 69.98, "elapsed_time": "7:15:52", "remaining_time": "3:07:00"} +{"current_steps": 4380, "total_steps": 6252, "loss": 0.861, "learning_rate": 3.875400176437867e-06, "epoch": 2.101601391471241, "percentage": 70.06, "elapsed_time": "7:16:11", "remaining_time": "3:06:25"} +{"current_steps": 4385, "total_steps": 6252, "loss": 0.867, "learning_rate": 3.8579194771425414e-06, "epoch": 2.1040004798176692, "percentage": 70.14, "elapsed_time": "7:16:31", "remaining_time": "3:05:51"} +{"current_steps": 4390, "total_steps": 6252, "loss": 0.8466, "learning_rate": 3.840453493562823e-06, "epoch": 2.1063995681640977, "percentage": 70.22, "elapsed_time": "7:16:51", "remaining_time": "3:05:17"} +{"current_steps": 4395, "total_steps": 6252, "loss": 0.7525, "learning_rate": 3.8230024507480375e-06, "epoch": 2.108798656510526, "percentage": 70.3, "elapsed_time": "7:17:11", "remaining_time": "3:04:43"} +{"current_steps": 4400, "total_steps": 6252, "loss": 0.9225, "learning_rate": 3.80556657355499e-06, "epoch": 2.1111977448569546, "percentage": 70.38, "elapsed_time": "7:17:30", "remaining_time": "3:04:09"} +{"current_steps": 4400, "total_steps": 6252, "eval_loss": 0.9466894865036011, "epoch": 2.1111977448569546, "percentage": 70.38, "elapsed_time": "7:20:26", "remaining_time": "3:05:23"} +{"current_steps": 4405, "total_steps": 6252, "loss": 0.7987, "learning_rate": 3.788146086645084e-06, "epoch": 2.1135968332033825, "percentage": 70.46, "elapsed_time": "7:21:22", "remaining_time": "3:05:03"} +{"current_steps": 4410, "total_steps": 6252, "loss": 0.7869, "learning_rate": 3.7707412144814154e-06, "epoch": 2.115995921549811, "percentage": 70.54, "elapsed_time": "7:21:42", "remaining_time": "3:04:29"} +{"current_steps": 4415, "total_steps": 6252, "loss": 0.9135, "learning_rate": 3.7533521813258845e-06, "epoch": 2.1183950098962394, "percentage": 70.62, "elapsed_time": "7:22:02", "remaining_time": "3:03:55"} +{"current_steps": 4420, "total_steps": 6252, "loss": 0.8726, "learning_rate": 3.735979211236309e-06, "epoch": 2.120794098242668, "percentage": 70.7, "elapsed_time": "7:22:21", "remaining_time": "3:03:21"} +{"current_steps": 4425, "total_steps": 6252, "loss": 0.8516, "learning_rate": 3.7186225280635286e-06, "epoch": 2.1231931865890963, "percentage": 70.78, "elapsed_time": "7:22:42", "remaining_time": "3:02:47"} +{"current_steps": 4430, "total_steps": 6252, "loss": 0.7885, "learning_rate": 3.701282355448531e-06, "epoch": 2.1255922749355243, "percentage": 70.86, "elapsed_time": "7:23:03", "remaining_time": "3:02:13"} +{"current_steps": 4435, "total_steps": 6252, "loss": 0.8337, "learning_rate": 3.6839589168195605e-06, "epoch": 2.1279913632819527, "percentage": 70.94, "elapsed_time": "7:23:25", "remaining_time": "3:01:40"} +{"current_steps": 4440, "total_steps": 6252, "loss": 0.9509, "learning_rate": 3.666652435389248e-06, "epoch": 2.130390451628381, "percentage": 71.02, "elapsed_time": "7:23:45", "remaining_time": "3:01:06"} +{"current_steps": 4445, "total_steps": 6252, "loss": 0.8803, "learning_rate": 3.6493631341517274e-06, "epoch": 2.1327895399748096, "percentage": 71.1, "elapsed_time": "7:24:05", "remaining_time": "3:00:32"} +{"current_steps": 4450, "total_steps": 6252, "loss": 0.8565, "learning_rate": 3.632091235879769e-06, "epoch": 2.135188628321238, "percentage": 71.18, "elapsed_time": "7:24:27", "remaining_time": "2:59:58"} +{"current_steps": 4455, "total_steps": 6252, "loss": 0.865, "learning_rate": 3.614836963121902e-06, "epoch": 2.1375877166676664, "percentage": 71.26, "elapsed_time": "7:24:46", "remaining_time": "2:59:24"} +{"current_steps": 4460, "total_steps": 6252, "loss": 0.8987, "learning_rate": 3.5976005381995573e-06, "epoch": 2.1399868050140944, "percentage": 71.34, "elapsed_time": "7:25:07", "remaining_time": "2:58:51"} +{"current_steps": 4465, "total_steps": 6252, "loss": 0.7778, "learning_rate": 3.5803821832041857e-06, "epoch": 2.142385893360523, "percentage": 71.42, "elapsed_time": "7:25:28", "remaining_time": "2:58:17"} +{"current_steps": 4470, "total_steps": 6252, "loss": 0.7757, "learning_rate": 3.563182119994417e-06, "epoch": 2.1447849817069513, "percentage": 71.5, "elapsed_time": "7:25:50", "remaining_time": "2:57:44"} +{"current_steps": 4475, "total_steps": 6252, "loss": 0.7319, "learning_rate": 3.5460005701931864e-06, "epoch": 2.1471840700533797, "percentage": 71.58, "elapsed_time": "7:26:11", "remaining_time": "2:57:10"} +{"current_steps": 4480, "total_steps": 6252, "loss": 0.9632, "learning_rate": 3.5288377551848855e-06, "epoch": 2.149583158399808, "percentage": 71.66, "elapsed_time": "7:26:31", "remaining_time": "2:56:37"} +{"current_steps": 4485, "total_steps": 6252, "loss": 0.8698, "learning_rate": 3.511693896112503e-06, "epoch": 2.1519822467462366, "percentage": 71.74, "elapsed_time": "7:26:55", "remaining_time": "2:56:04"} +{"current_steps": 4490, "total_steps": 6252, "loss": 0.8772, "learning_rate": 3.4945692138747898e-06, "epoch": 2.1543813350926646, "percentage": 71.82, "elapsed_time": "7:27:15", "remaining_time": "2:55:31"} +{"current_steps": 4495, "total_steps": 6252, "loss": 0.8039, "learning_rate": 3.4774639291233937e-06, "epoch": 2.156780423439093, "percentage": 71.9, "elapsed_time": "7:27:35", "remaining_time": "2:54:57"} +{"current_steps": 4500, "total_steps": 6252, "loss": 0.9901, "learning_rate": 3.4603782622600307e-06, "epoch": 2.1591795117855215, "percentage": 71.98, "elapsed_time": "7:27:55", "remaining_time": "2:54:23"} +{"current_steps": 4500, "total_steps": 6252, "eval_loss": 0.9466681480407715, "epoch": 2.1591795117855215, "percentage": 71.98, "elapsed_time": "7:30:53", "remaining_time": "2:55:32"} +{"current_steps": 4505, "total_steps": 6252, "loss": 0.8059, "learning_rate": 3.4433124334336383e-06, "epoch": 2.16157860013195, "percentage": 72.06, "elapsed_time": "7:31:13", "remaining_time": "2:54:58"} +{"current_steps": 4510, "total_steps": 6252, "loss": 0.9415, "learning_rate": 3.426266662537544e-06, "epoch": 2.1639776884783783, "percentage": 72.14, "elapsed_time": "7:31:31", "remaining_time": "2:54:24"} +{"current_steps": 4515, "total_steps": 6252, "loss": 0.8322, "learning_rate": 3.409241169206623e-06, "epoch": 2.166376776824807, "percentage": 72.22, "elapsed_time": "7:31:54", "remaining_time": "2:53:51"} +{"current_steps": 4520, "total_steps": 6252, "loss": 0.7832, "learning_rate": 3.3922361728144804e-06, "epoch": 2.1687758651712348, "percentage": 72.3, "elapsed_time": "7:32:13", "remaining_time": "2:53:17"} +{"current_steps": 4525, "total_steps": 6252, "loss": 0.7673, "learning_rate": 3.375251892470611e-06, "epoch": 2.171174953517663, "percentage": 72.38, "elapsed_time": "7:32:33", "remaining_time": "2:52:43"} +{"current_steps": 4530, "total_steps": 6252, "loss": 0.8652, "learning_rate": 3.358288547017591e-06, "epoch": 2.1735740418640916, "percentage": 72.46, "elapsed_time": "7:32:54", "remaining_time": "2:52:09"} +{"current_steps": 4535, "total_steps": 6252, "loss": 0.8218, "learning_rate": 3.3413463550282437e-06, "epoch": 2.17597313021052, "percentage": 72.54, "elapsed_time": "7:33:14", "remaining_time": "2:51:36"} +{"current_steps": 4540, "total_steps": 6252, "loss": 0.8349, "learning_rate": 3.324425534802835e-06, "epoch": 2.1783722185569485, "percentage": 72.62, "elapsed_time": "7:33:36", "remaining_time": "2:51:02"} +{"current_steps": 4545, "total_steps": 6252, "loss": 0.8862, "learning_rate": 3.307526304366251e-06, "epoch": 2.1807713069033765, "percentage": 72.7, "elapsed_time": "7:33:54", "remaining_time": "2:50:28"} +{"current_steps": 4550, "total_steps": 6252, "loss": 0.7924, "learning_rate": 3.290648881465196e-06, "epoch": 2.183170395249805, "percentage": 72.78, "elapsed_time": "7:34:16", "remaining_time": "2:49:55"} +{"current_steps": 4555, "total_steps": 6252, "loss": 0.8539, "learning_rate": 3.2737934835653827e-06, "epoch": 2.1855694835962334, "percentage": 72.86, "elapsed_time": "7:34:36", "remaining_time": "2:49:22"} +{"current_steps": 4560, "total_steps": 6252, "loss": 0.7829, "learning_rate": 3.2569603278487335e-06, "epoch": 2.187968571942662, "percentage": 72.94, "elapsed_time": "7:34:57", "remaining_time": "2:48:48"} +{"current_steps": 4565, "total_steps": 6252, "loss": 0.8173, "learning_rate": 3.2401496312105786e-06, "epoch": 2.1903676602890902, "percentage": 73.02, "elapsed_time": "7:35:17", "remaining_time": "2:48:15"} +{"current_steps": 4570, "total_steps": 6252, "loss": 0.9411, "learning_rate": 3.223361610256861e-06, "epoch": 2.1927667486355187, "percentage": 73.1, "elapsed_time": "7:35:36", "remaining_time": "2:47:41"} +{"current_steps": 4575, "total_steps": 6252, "loss": 0.9485, "learning_rate": 3.2065964813013533e-06, "epoch": 2.1951658369819467, "percentage": 73.18, "elapsed_time": "7:35:56", "remaining_time": "2:47:07"} +{"current_steps": 4580, "total_steps": 6252, "loss": 0.8482, "learning_rate": 3.1898544603628563e-06, "epoch": 2.197564925328375, "percentage": 73.26, "elapsed_time": "7:36:16", "remaining_time": "2:46:34"} +{"current_steps": 4585, "total_steps": 6252, "loss": 0.7985, "learning_rate": 3.1731357631624304e-06, "epoch": 2.1999640136748035, "percentage": 73.34, "elapsed_time": "7:36:38", "remaining_time": "2:46:01"} +{"current_steps": 4590, "total_steps": 6252, "loss": 0.8566, "learning_rate": 3.1564406051206063e-06, "epoch": 2.202363102021232, "percentage": 73.42, "elapsed_time": "7:36:58", "remaining_time": "2:45:27"} +{"current_steps": 4595, "total_steps": 6252, "loss": 0.8479, "learning_rate": 3.1397692013546154e-06, "epoch": 2.2047621903676604, "percentage": 73.5, "elapsed_time": "7:37:16", "remaining_time": "2:44:53"} +{"current_steps": 4600, "total_steps": 6252, "loss": 0.9263, "learning_rate": 3.1231217666756085e-06, "epoch": 2.207161278714089, "percentage": 73.58, "elapsed_time": "7:37:36", "remaining_time": "2:44:20"} +{"current_steps": 4600, "total_steps": 6252, "eval_loss": 0.9467650651931763, "epoch": 2.207161278714089, "percentage": 73.58, "elapsed_time": "7:40:32", "remaining_time": "2:45:23"} +{"current_steps": 4605, "total_steps": 6252, "loss": 0.8065, "learning_rate": 3.106498515585905e-06, "epoch": 2.209560367060517, "percentage": 73.66, "elapsed_time": "7:41:26", "remaining_time": "2:45:02"} +{"current_steps": 4610, "total_steps": 6252, "loss": 0.7885, "learning_rate": 3.089899662276208e-06, "epoch": 2.2119594554069453, "percentage": 73.74, "elapsed_time": "7:41:48", "remaining_time": "2:44:29"} +{"current_steps": 4615, "total_steps": 6252, "loss": 0.9224, "learning_rate": 3.073325420622862e-06, "epoch": 2.2143585437533737, "percentage": 73.82, "elapsed_time": "7:42:09", "remaining_time": "2:43:55"} +{"current_steps": 4620, "total_steps": 6252, "loss": 0.8299, "learning_rate": 3.056776004185086e-06, "epoch": 2.216757632099802, "percentage": 73.9, "elapsed_time": "7:42:29", "remaining_time": "2:43:22"} +{"current_steps": 4625, "total_steps": 6252, "loss": 0.698, "learning_rate": 3.0402516262022312e-06, "epoch": 2.2191567204462306, "percentage": 73.98, "elapsed_time": "7:42:48", "remaining_time": "2:42:48"} +{"current_steps": 4630, "total_steps": 6252, "loss": 0.8001, "learning_rate": 3.0237524995910205e-06, "epoch": 2.221555808792659, "percentage": 74.06, "elapsed_time": "7:43:08", "remaining_time": "2:42:14"} +{"current_steps": 4635, "total_steps": 6252, "loss": 0.7655, "learning_rate": 3.0072788369428195e-06, "epoch": 2.223954897139087, "percentage": 74.14, "elapsed_time": "7:43:27", "remaining_time": "2:41:41"} +{"current_steps": 4640, "total_steps": 6252, "loss": 0.8143, "learning_rate": 2.9908308505208864e-06, "epoch": 2.2263539854855154, "percentage": 74.22, "elapsed_time": "7:43:47", "remaining_time": "2:41:07"} +{"current_steps": 4645, "total_steps": 6252, "loss": 0.8349, "learning_rate": 2.9744087522576444e-06, "epoch": 2.228753073831944, "percentage": 74.3, "elapsed_time": "7:44:06", "remaining_time": "2:40:33"} +{"current_steps": 4650, "total_steps": 6252, "loss": 0.8516, "learning_rate": 2.9580127537519432e-06, "epoch": 2.2311521621783723, "percentage": 74.38, "elapsed_time": "7:44:28", "remaining_time": "2:40:01"} +{"current_steps": 4655, "total_steps": 6252, "loss": 0.8004, "learning_rate": 2.9416430662663432e-06, "epoch": 2.2335512505248007, "percentage": 74.46, "elapsed_time": "7:44:49", "remaining_time": "2:39:28"} +{"current_steps": 4660, "total_steps": 6252, "loss": 0.8981, "learning_rate": 2.9252999007243786e-06, "epoch": 2.2359503388712287, "percentage": 74.54, "elapsed_time": "7:45:09", "remaining_time": "2:38:54"} +{"current_steps": 4665, "total_steps": 6252, "loss": 0.7687, "learning_rate": 2.908983467707856e-06, "epoch": 2.238349427217657, "percentage": 74.62, "elapsed_time": "7:45:30", "remaining_time": "2:38:21"} +{"current_steps": 4670, "total_steps": 6252, "loss": 0.7922, "learning_rate": 2.8926939774541273e-06, "epoch": 2.2407485155640856, "percentage": 74.7, "elapsed_time": "7:45:49", "remaining_time": "2:37:48"} +{"current_steps": 4675, "total_steps": 6252, "loss": 0.7277, "learning_rate": 2.876431639853396e-06, "epoch": 2.243147603910514, "percentage": 74.78, "elapsed_time": "7:46:09", "remaining_time": "2:37:14"} +{"current_steps": 4680, "total_steps": 6252, "loss": 0.7337, "learning_rate": 2.860196664445988e-06, "epoch": 2.2455466922569425, "percentage": 74.86, "elapsed_time": "7:46:29", "remaining_time": "2:36:41"} +{"current_steps": 4685, "total_steps": 6252, "loss": 0.9654, "learning_rate": 2.8439892604196834e-06, "epoch": 2.247945780603371, "percentage": 74.94, "elapsed_time": "7:46:49", "remaining_time": "2:36:08"} +{"current_steps": 4690, "total_steps": 6252, "loss": 0.875, "learning_rate": 2.8278096366069945e-06, "epoch": 2.250344868949799, "percentage": 75.02, "elapsed_time": "7:47:09", "remaining_time": "2:35:35"} +{"current_steps": 4695, "total_steps": 6252, "loss": 0.8906, "learning_rate": 2.811658001482489e-06, "epoch": 2.2527439572962273, "percentage": 75.1, "elapsed_time": "7:47:28", "remaining_time": "2:35:01"} +{"current_steps": 4700, "total_steps": 6252, "loss": 0.7735, "learning_rate": 2.7955345631600993e-06, "epoch": 2.2551430456426558, "percentage": 75.18, "elapsed_time": "7:47:47", "remaining_time": "2:34:28"} +{"current_steps": 4700, "total_steps": 6252, "eval_loss": 0.9466607570648193, "epoch": 2.2551430456426558, "percentage": 75.18, "elapsed_time": "7:50:47", "remaining_time": "2:35:27"} +{"current_steps": 4705, "total_steps": 6252, "loss": 0.8957, "learning_rate": 2.779439529390441e-06, "epoch": 2.257542133989084, "percentage": 75.26, "elapsed_time": "7:51:07", "remaining_time": "2:34:54"} +{"current_steps": 4710, "total_steps": 6252, "loss": 0.8791, "learning_rate": 2.7633731075581406e-06, "epoch": 2.2599412223355126, "percentage": 75.34, "elapsed_time": "7:51:27", "remaining_time": "2:34:21"} +{"current_steps": 4715, "total_steps": 6252, "loss": 0.8097, "learning_rate": 2.747335504679156e-06, "epoch": 2.2623403106819406, "percentage": 75.42, "elapsed_time": "7:51:47", "remaining_time": "2:33:47"} +{"current_steps": 4720, "total_steps": 6252, "loss": 0.8695, "learning_rate": 2.7313269273981135e-06, "epoch": 2.264739399028369, "percentage": 75.5, "elapsed_time": "7:52:06", "remaining_time": "2:33:14"} +{"current_steps": 4725, "total_steps": 6252, "loss": 0.8596, "learning_rate": 2.7153475819856425e-06, "epoch": 2.2671384873747975, "percentage": 75.58, "elapsed_time": "7:52:28", "remaining_time": "2:32:41"} +{"current_steps": 4730, "total_steps": 6252, "loss": 0.8044, "learning_rate": 2.6993976743357264e-06, "epoch": 2.269537575721226, "percentage": 75.66, "elapsed_time": "7:52:48", "remaining_time": "2:32:08"} +{"current_steps": 4735, "total_steps": 6252, "loss": 0.8534, "learning_rate": 2.6834774099630323e-06, "epoch": 2.2719366640676544, "percentage": 75.74, "elapsed_time": "7:53:08", "remaining_time": "2:31:34"} +{"current_steps": 4740, "total_steps": 6252, "loss": 0.8286, "learning_rate": 2.667586994000283e-06, "epoch": 2.274335752414083, "percentage": 75.82, "elapsed_time": "7:53:27", "remaining_time": "2:31:01"} +{"current_steps": 4745, "total_steps": 6252, "loss": 0.871, "learning_rate": 2.651726631195599e-06, "epoch": 2.2767348407605112, "percentage": 75.9, "elapsed_time": "7:53:47", "remaining_time": "2:30:28"} +{"current_steps": 4750, "total_steps": 6252, "loss": 0.8352, "learning_rate": 2.635896525909868e-06, "epoch": 2.2791339291069392, "percentage": 75.98, "elapsed_time": "7:54:07", "remaining_time": "2:29:55"} +{"current_steps": 4755, "total_steps": 6252, "loss": 0.7521, "learning_rate": 2.620096882114106e-06, "epoch": 2.2815330174533677, "percentage": 76.06, "elapsed_time": "7:54:27", "remaining_time": "2:29:22"} +{"current_steps": 4760, "total_steps": 6252, "loss": 0.9201, "learning_rate": 2.6043279033868407e-06, "epoch": 2.283932105799796, "percentage": 76.14, "elapsed_time": "7:54:46", "remaining_time": "2:28:48"} +{"current_steps": 4765, "total_steps": 6252, "loss": 0.8577, "learning_rate": 2.5885897929114662e-06, "epoch": 2.2863311941462245, "percentage": 76.22, "elapsed_time": "7:55:05", "remaining_time": "2:28:15"} +{"current_steps": 4770, "total_steps": 6252, "loss": 0.8168, "learning_rate": 2.572882753473654e-06, "epoch": 2.288730282492653, "percentage": 76.3, "elapsed_time": "7:55:25", "remaining_time": "2:27:42"} +{"current_steps": 4775, "total_steps": 6252, "loss": 0.8826, "learning_rate": 2.5572069874587157e-06, "epoch": 2.291129370839081, "percentage": 76.38, "elapsed_time": "7:55:48", "remaining_time": "2:27:10"} +{"current_steps": 4780, "total_steps": 6252, "loss": 0.8244, "learning_rate": 2.5415626968490075e-06, "epoch": 2.2935284591855094, "percentage": 76.46, "elapsed_time": "7:56:07", "remaining_time": "2:26:37"} +{"current_steps": 4785, "total_steps": 6252, "loss": 0.7957, "learning_rate": 2.5259500832213224e-06, "epoch": 2.295927547531938, "percentage": 76.54, "elapsed_time": "7:56:28", "remaining_time": "2:26:04"} +{"current_steps": 4790, "total_steps": 6252, "loss": 0.8546, "learning_rate": 2.510369347744303e-06, "epoch": 2.2983266358783663, "percentage": 76.62, "elapsed_time": "7:56:47", "remaining_time": "2:25:31"} +{"current_steps": 4795, "total_steps": 6252, "loss": 0.8521, "learning_rate": 2.4948206911758284e-06, "epoch": 2.3007257242247947, "percentage": 76.7, "elapsed_time": "7:57:09", "remaining_time": "2:24:59"} +{"current_steps": 4800, "total_steps": 6252, "loss": 0.8454, "learning_rate": 2.4793043138604546e-06, "epoch": 2.303124812571223, "percentage": 76.78, "elapsed_time": "7:57:29", "remaining_time": "2:24:26"} +{"current_steps": 4800, "total_steps": 6252, "eval_loss": 0.94642174243927, "epoch": 2.303124812571223, "percentage": 76.78, "elapsed_time": "8:00:42", "remaining_time": "2:25:25"} +{"current_steps": 4805, "total_steps": 6252, "loss": 0.7795, "learning_rate": 2.46382041572681e-06, "epoch": 2.305523900917651, "percentage": 76.86, "elapsed_time": "8:01:39", "remaining_time": "2:25:02"} +{"current_steps": 4810, "total_steps": 6252, "loss": 0.9321, "learning_rate": 2.4483691962850327e-06, "epoch": 2.3079229892640796, "percentage": 76.94, "elapsed_time": "8:02:00", "remaining_time": "2:24:30"} +{"current_steps": 4815, "total_steps": 6252, "loss": 0.8356, "learning_rate": 2.432950854624193e-06, "epoch": 2.310322077610508, "percentage": 77.02, "elapsed_time": "8:02:22", "remaining_time": "2:23:57"} +{"current_steps": 4820, "total_steps": 6252, "loss": 0.7706, "learning_rate": 2.4175655894097335e-06, "epoch": 2.3127211659569364, "percentage": 77.1, "elapsed_time": "8:02:43", "remaining_time": "2:23:25"} +{"current_steps": 4825, "total_steps": 6252, "loss": 0.791, "learning_rate": 2.4022135988809025e-06, "epoch": 2.315120254303365, "percentage": 77.18, "elapsed_time": "8:03:04", "remaining_time": "2:22:52"} +{"current_steps": 4830, "total_steps": 6252, "loss": 0.7859, "learning_rate": 2.3868950808482107e-06, "epoch": 2.317519342649793, "percentage": 77.26, "elapsed_time": "8:03:25", "remaining_time": "2:22:19"} +{"current_steps": 4835, "total_steps": 6252, "loss": 0.8915, "learning_rate": 2.371610232690869e-06, "epoch": 2.3199184309962213, "percentage": 77.34, "elapsed_time": "8:03:46", "remaining_time": "2:21:46"} +{"current_steps": 4840, "total_steps": 6252, "loss": 0.9431, "learning_rate": 2.3563592513542543e-06, "epoch": 2.3223175193426497, "percentage": 77.42, "elapsed_time": "8:04:06", "remaining_time": "2:21:14"} +{"current_steps": 4845, "total_steps": 6252, "loss": 0.8549, "learning_rate": 2.3411423333473683e-06, "epoch": 2.324716607689078, "percentage": 77.5, "elapsed_time": "8:04:28", "remaining_time": "2:20:41"} +{"current_steps": 4850, "total_steps": 6252, "loss": 0.8688, "learning_rate": 2.325959674740306e-06, "epoch": 2.3271156960355066, "percentage": 77.58, "elapsed_time": "8:04:50", "remaining_time": "2:20:09"} +{"current_steps": 4855, "total_steps": 6252, "loss": 0.9216, "learning_rate": 2.3108114711617335e-06, "epoch": 2.329514784381935, "percentage": 77.66, "elapsed_time": "8:05:10", "remaining_time": "2:19:36"} +{"current_steps": 4860, "total_steps": 6252, "loss": 0.8822, "learning_rate": 2.29569791779636e-06, "epoch": 2.331913872728363, "percentage": 77.74, "elapsed_time": "8:05:33", "remaining_time": "2:19:04"} +{"current_steps": 4865, "total_steps": 6252, "loss": 0.837, "learning_rate": 2.2806192093824277e-06, "epoch": 2.3343129610747915, "percentage": 77.82, "elapsed_time": "8:05:53", "remaining_time": "2:18:31"} +{"current_steps": 4870, "total_steps": 6252, "loss": 0.8704, "learning_rate": 2.265575540209198e-06, "epoch": 2.33671204942122, "percentage": 77.9, "elapsed_time": "8:06:14", "remaining_time": "2:17:59"} +{"current_steps": 4875, "total_steps": 6252, "loss": 0.7557, "learning_rate": 2.250567104114461e-06, "epoch": 2.3391111377676483, "percentage": 77.98, "elapsed_time": "8:06:34", "remaining_time": "2:17:26"} +{"current_steps": 4880, "total_steps": 6252, "loss": 0.756, "learning_rate": 2.235594094482014e-06, "epoch": 2.3415102261140768, "percentage": 78.06, "elapsed_time": "8:06:55", "remaining_time": "2:16:53"} +{"current_steps": 4885, "total_steps": 6252, "loss": 0.887, "learning_rate": 2.220656704239198e-06, "epoch": 2.3439093144605048, "percentage": 78.13, "elapsed_time": "8:07:16", "remaining_time": "2:16:21"} +{"current_steps": 4890, "total_steps": 6252, "loss": 0.799, "learning_rate": 2.2057551258543893e-06, "epoch": 2.346308402806933, "percentage": 78.21, "elapsed_time": "8:07:37", "remaining_time": "2:15:49"} +{"current_steps": 4895, "total_steps": 6252, "loss": 0.9533, "learning_rate": 2.1908895513345314e-06, "epoch": 2.3487074911533616, "percentage": 78.29, "elapsed_time": "8:07:57", "remaining_time": "2:15:16"} +{"current_steps": 4900, "total_steps": 6252, "loss": 0.8562, "learning_rate": 2.176060172222654e-06, "epoch": 2.35110657949979, "percentage": 78.37, "elapsed_time": "8:08:18", "remaining_time": "2:14:43"} +{"current_steps": 4900, "total_steps": 6252, "eval_loss": 0.9465652108192444, "epoch": 2.35110657949979, "percentage": 78.37, "elapsed_time": "8:11:25", "remaining_time": "2:15:35"} +{"current_steps": 4905, "total_steps": 6252, "loss": 0.9049, "learning_rate": 2.1612671795954193e-06, "epoch": 2.3535056678462185, "percentage": 78.45, "elapsed_time": "8:11:47", "remaining_time": "2:15:03"} +{"current_steps": 4910, "total_steps": 6252, "loss": 0.7734, "learning_rate": 2.146510764060633e-06, "epoch": 2.355904756192647, "percentage": 78.53, "elapsed_time": "8:12:08", "remaining_time": "2:14:30"} +{"current_steps": 4915, "total_steps": 6252, "loss": 0.8603, "learning_rate": 2.1317911157548187e-06, "epoch": 2.3583038445390754, "percentage": 78.61, "elapsed_time": "8:12:31", "remaining_time": "2:13:58"} +{"current_steps": 4920, "total_steps": 6252, "loss": 0.877, "learning_rate": 2.1171084243407487e-06, "epoch": 2.3607029328855034, "percentage": 78.69, "elapsed_time": "8:12:52", "remaining_time": "2:13:26"} +{"current_steps": 4925, "total_steps": 6252, "loss": 0.9646, "learning_rate": 2.1024628790050038e-06, "epoch": 2.363102021231932, "percentage": 78.77, "elapsed_time": "8:13:15", "remaining_time": "2:12:54"} +{"current_steps": 4930, "total_steps": 6252, "loss": 0.9592, "learning_rate": 2.0878546684555384e-06, "epoch": 2.3655011095783602, "percentage": 78.85, "elapsed_time": "8:13:36", "remaining_time": "2:12:21"} +{"current_steps": 4935, "total_steps": 6252, "loss": 0.7567, "learning_rate": 2.073283980919254e-06, "epoch": 2.3679001979247887, "percentage": 78.93, "elapsed_time": "8:13:55", "remaining_time": "2:11:48"} +{"current_steps": 4940, "total_steps": 6252, "loss": 0.7229, "learning_rate": 2.0587510041395553e-06, "epoch": 2.370299286271217, "percentage": 79.01, "elapsed_time": "8:14:16", "remaining_time": "2:11:16"} +{"current_steps": 4945, "total_steps": 6252, "loss": 0.8459, "learning_rate": 2.044255925373956e-06, "epoch": 2.372698374617645, "percentage": 79.09, "elapsed_time": "8:14:36", "remaining_time": "2:10:43"} +{"current_steps": 4950, "total_steps": 6252, "loss": 0.8717, "learning_rate": 2.029798931391646e-06, "epoch": 2.3750974629640735, "percentage": 79.17, "elapsed_time": "8:14:56", "remaining_time": "2:10:11"} +{"current_steps": 4955, "total_steps": 6252, "loss": 0.8185, "learning_rate": 2.015380208471096e-06, "epoch": 2.377496551310502, "percentage": 79.25, "elapsed_time": "8:15:17", "remaining_time": "2:09:38"} +{"current_steps": 4960, "total_steps": 6252, "loss": 0.8071, "learning_rate": 2.0009999423976527e-06, "epoch": 2.3798956396569304, "percentage": 79.33, "elapsed_time": "8:15:37", "remaining_time": "2:09:06"} +{"current_steps": 4965, "total_steps": 6252, "loss": 0.8988, "learning_rate": 1.9866583184611452e-06, "epoch": 2.382294728003359, "percentage": 79.41, "elapsed_time": "8:15:57", "remaining_time": "2:08:33"} +{"current_steps": 4970, "total_steps": 6252, "loss": 0.8504, "learning_rate": 1.9723555214534983e-06, "epoch": 2.3846938163497873, "percentage": 79.49, "elapsed_time": "8:16:17", "remaining_time": "2:08:01"} +{"current_steps": 4975, "total_steps": 6252, "loss": 0.8153, "learning_rate": 1.958091735666356e-06, "epoch": 2.3870929046962153, "percentage": 79.57, "elapsed_time": "8:16:36", "remaining_time": "2:07:28"} +{"current_steps": 4980, "total_steps": 6252, "loss": 0.8636, "learning_rate": 1.9438671448886963e-06, "epoch": 2.3894919930426437, "percentage": 79.65, "elapsed_time": "8:16:58", "remaining_time": "2:06:56"} +{"current_steps": 4985, "total_steps": 6252, "loss": 0.7966, "learning_rate": 1.929681932404473e-06, "epoch": 2.391891081389072, "percentage": 79.73, "elapsed_time": "8:17:18", "remaining_time": "2:06:23"} +{"current_steps": 4990, "total_steps": 6252, "loss": 0.7249, "learning_rate": 1.915536280990249e-06, "epoch": 2.3942901697355006, "percentage": 79.81, "elapsed_time": "8:17:39", "remaining_time": "2:05:51"} +{"current_steps": 4995, "total_steps": 6252, "loss": 0.8304, "learning_rate": 1.9014303729128402e-06, "epoch": 2.396689258081929, "percentage": 79.89, "elapsed_time": "8:17:58", "remaining_time": "2:05:18"} +{"current_steps": 5000, "total_steps": 6252, "loss": 0.8923, "learning_rate": 1.8873643899269761e-06, "epoch": 2.399088346428357, "percentage": 79.97, "elapsed_time": "8:18:19", "remaining_time": "2:04:46"} +{"current_steps": 5000, "total_steps": 6252, "eval_loss": 0.946355402469635, "epoch": 2.399088346428357, "percentage": 79.97, "elapsed_time": "8:21:15", "remaining_time": "2:05:30"} +{"current_steps": 5005, "total_steps": 6252, "loss": 0.9251, "learning_rate": 1.8733385132729453e-06, "epoch": 2.4014874347747854, "percentage": 80.05, "elapsed_time": "8:22:11", "remaining_time": "2:05:07"} +{"current_steps": 5010, "total_steps": 6252, "loss": 0.9606, "learning_rate": 1.859352923674267e-06, "epoch": 2.403886523121214, "percentage": 80.13, "elapsed_time": "8:22:32", "remaining_time": "2:04:35"} +{"current_steps": 5015, "total_steps": 6252, "loss": 0.9109, "learning_rate": 1.8454078013353604e-06, "epoch": 2.4062856114676423, "percentage": 80.21, "elapsed_time": "8:22:52", "remaining_time": "2:04:02"} +{"current_steps": 5020, "total_steps": 6252, "loss": 0.7988, "learning_rate": 1.8315033259392313e-06, "epoch": 2.4086846998140707, "percentage": 80.29, "elapsed_time": "8:23:14", "remaining_time": "2:03:30"} +{"current_steps": 5025, "total_steps": 6252, "loss": 0.8556, "learning_rate": 1.8176396766451353e-06, "epoch": 2.411083788160499, "percentage": 80.37, "elapsed_time": "8:23:35", "remaining_time": "2:02:57"} +{"current_steps": 5030, "total_steps": 6252, "loss": 0.8578, "learning_rate": 1.803817032086298e-06, "epoch": 2.4134828765069276, "percentage": 80.45, "elapsed_time": "8:23:54", "remaining_time": "2:02:25"} +{"current_steps": 5035, "total_steps": 6252, "loss": 0.8618, "learning_rate": 1.7900355703675893e-06, "epoch": 2.4158819648533556, "percentage": 80.53, "elapsed_time": "8:24:17", "remaining_time": "2:01:53"} +{"current_steps": 5040, "total_steps": 6252, "loss": 0.8395, "learning_rate": 1.7762954690632416e-06, "epoch": 2.418281053199784, "percentage": 80.61, "elapsed_time": "8:24:38", "remaining_time": "2:01:21"} +{"current_steps": 5045, "total_steps": 6252, "loss": 0.885, "learning_rate": 1.7625969052145557e-06, "epoch": 2.4206801415462125, "percentage": 80.69, "elapsed_time": "8:24:58", "remaining_time": "2:00:48"} +{"current_steps": 5050, "total_steps": 6252, "loss": 0.7281, "learning_rate": 1.7489400553276281e-06, "epoch": 2.423079229892641, "percentage": 80.77, "elapsed_time": "8:25:20", "remaining_time": "2:00:16"} +{"current_steps": 5055, "total_steps": 6252, "loss": 0.8529, "learning_rate": 1.73532509537106e-06, "epoch": 2.4254783182390693, "percentage": 80.85, "elapsed_time": "8:25:42", "remaining_time": "1:59:44"} +{"current_steps": 5060, "total_steps": 6252, "loss": 0.9102, "learning_rate": 1.7217522007737108e-06, "epoch": 2.4278774065854973, "percentage": 80.93, "elapsed_time": "8:26:01", "remaining_time": "1:59:12"} +{"current_steps": 5065, "total_steps": 6252, "loss": 0.8904, "learning_rate": 1.7082215464224228e-06, "epoch": 2.4302764949319258, "percentage": 81.01, "elapsed_time": "8:26:23", "remaining_time": "1:58:40"} +{"current_steps": 5070, "total_steps": 6252, "loss": 0.883, "learning_rate": 1.6947333066597721e-06, "epoch": 2.432675583278354, "percentage": 81.09, "elapsed_time": "8:26:43", "remaining_time": "1:58:08"} +{"current_steps": 5075, "total_steps": 6252, "loss": 0.9472, "learning_rate": 1.6812876552818236e-06, "epoch": 2.4350746716247826, "percentage": 81.17, "elapsed_time": "8:27:02", "remaining_time": "1:57:35"} +{"current_steps": 5080, "total_steps": 6252, "loss": 0.9375, "learning_rate": 1.6678847655358899e-06, "epoch": 2.437473759971211, "percentage": 81.25, "elapsed_time": "8:27:23", "remaining_time": "1:57:03"} +{"current_steps": 5085, "total_steps": 6252, "loss": 0.8775, "learning_rate": 1.6545248101182992e-06, "epoch": 2.4398728483176395, "percentage": 81.33, "elapsed_time": "8:27:45", "remaining_time": "1:56:31"} +{"current_steps": 5090, "total_steps": 6252, "loss": 0.8681, "learning_rate": 1.641207961172175e-06, "epoch": 2.4422719366640675, "percentage": 81.41, "elapsed_time": "8:28:05", "remaining_time": "1:55:59"} +{"current_steps": 5095, "total_steps": 6252, "loss": 0.82, "learning_rate": 1.627934390285207e-06, "epoch": 2.444671025010496, "percentage": 81.49, "elapsed_time": "8:28:25", "remaining_time": "1:55:27"} +{"current_steps": 5100, "total_steps": 6252, "loss": 0.7529, "learning_rate": 1.614704268487451e-06, "epoch": 2.4470701133569244, "percentage": 81.57, "elapsed_time": "8:28:46", "remaining_time": "1:54:55"} +{"current_steps": 5100, "total_steps": 6252, "eval_loss": 0.9462727904319763, "epoch": 2.4470701133569244, "percentage": 81.57, "elapsed_time": "8:31:42", "remaining_time": "1:55:35"} +{"current_steps": 5105, "total_steps": 6252, "loss": 0.7723, "learning_rate": 1.60151776624912e-06, "epoch": 2.449469201703353, "percentage": 81.65, "elapsed_time": "8:32:01", "remaining_time": "1:55:02"} +{"current_steps": 5110, "total_steps": 6252, "loss": 0.7418, "learning_rate": 1.5883750534783876e-06, "epoch": 2.4518682900497812, "percentage": 81.73, "elapsed_time": "8:32:21", "remaining_time": "1:54:30"} +{"current_steps": 5115, "total_steps": 6252, "loss": 0.823, "learning_rate": 1.5752762995192e-06, "epoch": 2.4542673783962092, "percentage": 81.81, "elapsed_time": "8:32:41", "remaining_time": "1:53:57"} +{"current_steps": 5120, "total_steps": 6252, "loss": 0.889, "learning_rate": 1.5622216731490975e-06, "epoch": 2.4566664667426377, "percentage": 81.89, "elapsed_time": "8:33:03", "remaining_time": "1:53:25"} +{"current_steps": 5125, "total_steps": 6252, "loss": 0.7486, "learning_rate": 1.549211342577031e-06, "epoch": 2.459065555089066, "percentage": 81.97, "elapsed_time": "8:33:22", "remaining_time": "1:52:53"} +{"current_steps": 5130, "total_steps": 6252, "loss": 0.8351, "learning_rate": 1.536245475441201e-06, "epoch": 2.4614646434354945, "percentage": 82.05, "elapsed_time": "8:33:42", "remaining_time": "1:52:21"} +{"current_steps": 5135, "total_steps": 6252, "loss": 0.7765, "learning_rate": 1.523324238806902e-06, "epoch": 2.463863731781923, "percentage": 82.13, "elapsed_time": "8:34:02", "remaining_time": "1:51:49"} +{"current_steps": 5140, "total_steps": 6252, "loss": 0.9074, "learning_rate": 1.5104477991643517e-06, "epoch": 2.4662628201283514, "percentage": 82.21, "elapsed_time": "8:34:23", "remaining_time": "1:51:17"} +{"current_steps": 5145, "total_steps": 6252, "loss": 0.8319, "learning_rate": 1.4976163224265728e-06, "epoch": 2.4686619084747794, "percentage": 82.29, "elapsed_time": "8:34:44", "remaining_time": "1:50:45"} +{"current_steps": 5150, "total_steps": 6252, "loss": 0.7772, "learning_rate": 1.4848299739272304e-06, "epoch": 2.471060996821208, "percentage": 82.37, "elapsed_time": "8:35:03", "remaining_time": "1:50:12"} +{"current_steps": 5155, "total_steps": 6252, "loss": 0.8531, "learning_rate": 1.4720889184185155e-06, "epoch": 2.4734600851676363, "percentage": 82.45, "elapsed_time": "8:35:22", "remaining_time": "1:49:40"} +{"current_steps": 5160, "total_steps": 6252, "loss": 0.7806, "learning_rate": 1.459393320069018e-06, "epoch": 2.4758591735140647, "percentage": 82.53, "elapsed_time": "8:35:42", "remaining_time": "1:49:08"} +{"current_steps": 5165, "total_steps": 6252, "loss": 1.0109, "learning_rate": 1.4467433424616155e-06, "epoch": 2.478258261860493, "percentage": 82.61, "elapsed_time": "8:36:02", "remaining_time": "1:48:36"} +{"current_steps": 5170, "total_steps": 6252, "loss": 0.8122, "learning_rate": 1.4341391485913536e-06, "epoch": 2.480657350206921, "percentage": 82.69, "elapsed_time": "8:36:22", "remaining_time": "1:48:04"} +{"current_steps": 5175, "total_steps": 6252, "loss": 0.8517, "learning_rate": 1.4215809008633636e-06, "epoch": 2.4830564385533496, "percentage": 82.77, "elapsed_time": "8:36:43", "remaining_time": "1:47:32"} +{"current_steps": 5180, "total_steps": 6252, "loss": 0.7956, "learning_rate": 1.409068761090755e-06, "epoch": 2.485455526899778, "percentage": 82.85, "elapsed_time": "8:37:03", "remaining_time": "1:47:00"} +{"current_steps": 5185, "total_steps": 6252, "loss": 0.7672, "learning_rate": 1.3966028904925372e-06, "epoch": 2.4878546152462064, "percentage": 82.93, "elapsed_time": "8:37:22", "remaining_time": "1:46:28"} +{"current_steps": 5190, "total_steps": 6252, "loss": 0.7573, "learning_rate": 1.384183449691539e-06, "epoch": 2.490253703592635, "percentage": 83.01, "elapsed_time": "8:37:41", "remaining_time": "1:45:56"} +{"current_steps": 5195, "total_steps": 6252, "loss": 0.8696, "learning_rate": 1.3718105987123482e-06, "epoch": 2.4926527919390633, "percentage": 83.09, "elapsed_time": "8:38:03", "remaining_time": "1:45:24"} +{"current_steps": 5200, "total_steps": 6252, "loss": 0.8421, "learning_rate": 1.3594844969792304e-06, "epoch": 2.4950518802854917, "percentage": 83.17, "elapsed_time": "8:38:23", "remaining_time": "1:44:52"} +{"current_steps": 5200, "total_steps": 6252, "eval_loss": 0.9463452100753784, "epoch": 2.4950518802854917, "percentage": 83.17, "elapsed_time": "8:41:19", "remaining_time": "1:45:28"} +{"current_steps": 5205, "total_steps": 6252, "loss": 0.9172, "learning_rate": 1.347205303314098e-06, "epoch": 2.4974509686319197, "percentage": 83.25, "elapsed_time": "8:42:15", "remaining_time": "1:45:03"} +{"current_steps": 5210, "total_steps": 6252, "loss": 0.8079, "learning_rate": 1.3349731759344469e-06, "epoch": 2.499850056978348, "percentage": 83.33, "elapsed_time": "8:42:36", "remaining_time": "1:44:31"} +{"current_steps": 5215, "total_steps": 6252, "loss": 0.752, "learning_rate": 1.3227882724513253e-06, "epoch": 2.5022491453247766, "percentage": 83.41, "elapsed_time": "8:42:57", "remaining_time": "1:43:59"} +{"current_steps": 5220, "total_steps": 6252, "loss": 0.8044, "learning_rate": 1.3106507498672999e-06, "epoch": 2.504648233671205, "percentage": 83.49, "elapsed_time": "8:43:17", "remaining_time": "1:43:27"} +{"current_steps": 5225, "total_steps": 6252, "loss": 0.8345, "learning_rate": 1.2985607645744352e-06, "epoch": 2.507047322017633, "percentage": 83.57, "elapsed_time": "8:43:38", "remaining_time": "1:42:55"} +{"current_steps": 5230, "total_steps": 6252, "loss": 0.7665, "learning_rate": 1.286518472352276e-06, "epoch": 2.5094464103640615, "percentage": 83.65, "elapsed_time": "8:43:58", "remaining_time": "1:42:23"} +{"current_steps": 5235, "total_steps": 6252, "loss": 0.8592, "learning_rate": 1.2745240283658456e-06, "epoch": 2.51184549871049, "percentage": 83.73, "elapsed_time": "8:44:18", "remaining_time": "1:41:51"} +{"current_steps": 5240, "total_steps": 6252, "loss": 0.7824, "learning_rate": 1.2625775871636376e-06, "epoch": 2.5142445870569183, "percentage": 83.81, "elapsed_time": "8:44:41", "remaining_time": "1:41:19"} +{"current_steps": 5245, "total_steps": 6252, "loss": 0.827, "learning_rate": 1.2506793026756314e-06, "epoch": 2.5166436754033468, "percentage": 83.89, "elapsed_time": "8:45:01", "remaining_time": "1:40:48"} +{"current_steps": 5250, "total_steps": 6252, "loss": 0.8529, "learning_rate": 1.2388293282113067e-06, "epoch": 2.519042763749775, "percentage": 83.97, "elapsed_time": "8:45:21", "remaining_time": "1:40:16"} +{"current_steps": 5255, "total_steps": 6252, "loss": 0.8162, "learning_rate": 1.2270278164576688e-06, "epoch": 2.5214418520962036, "percentage": 84.05, "elapsed_time": "8:45:41", "remaining_time": "1:39:44"} +{"current_steps": 5260, "total_steps": 6252, "loss": 0.8861, "learning_rate": 1.2152749194772783e-06, "epoch": 2.523840940442632, "percentage": 84.13, "elapsed_time": "8:46:02", "remaining_time": "1:39:12"} +{"current_steps": 5265, "total_steps": 6252, "loss": 0.7473, "learning_rate": 1.2035707887062981e-06, "epoch": 2.52624002878906, "percentage": 84.21, "elapsed_time": "8:46:23", "remaining_time": "1:38:40"} +{"current_steps": 5270, "total_steps": 6252, "loss": 0.7434, "learning_rate": 1.1919155749525357e-06, "epoch": 2.5286391171354885, "percentage": 84.29, "elapsed_time": "8:46:42", "remaining_time": "1:38:08"} +{"current_steps": 5275, "total_steps": 6252, "loss": 0.835, "learning_rate": 1.1803094283935002e-06, "epoch": 2.531038205481917, "percentage": 84.37, "elapsed_time": "8:47:04", "remaining_time": "1:37:37"} +{"current_steps": 5280, "total_steps": 6252, "loss": 0.86, "learning_rate": 1.1687524985744764e-06, "epoch": 2.5334372938283454, "percentage": 84.45, "elapsed_time": "8:47:26", "remaining_time": "1:37:05"} +{"current_steps": 5285, "total_steps": 6252, "loss": 0.84, "learning_rate": 1.1572449344065816e-06, "epoch": 2.5358363821747734, "percentage": 84.53, "elapsed_time": "8:47:45", "remaining_time": "1:36:33"} +{"current_steps": 5290, "total_steps": 6252, "loss": 0.8313, "learning_rate": 1.1457868841648656e-06, "epoch": 2.538235470521202, "percentage": 84.61, "elapsed_time": "8:48:04", "remaining_time": "1:36:01"} +{"current_steps": 5295, "total_steps": 6252, "loss": 0.794, "learning_rate": 1.1343784954863847e-06, "epoch": 2.5406345588676302, "percentage": 84.69, "elapsed_time": "8:48:26", "remaining_time": "1:35:30"} +{"current_steps": 5300, "total_steps": 6252, "loss": 0.8578, "learning_rate": 1.123019915368308e-06, "epoch": 2.5430336472140587, "percentage": 84.77, "elapsed_time": "8:48:44", "remaining_time": "1:34:58"} +{"current_steps": 5300, "total_steps": 6252, "eval_loss": 0.9463096261024475, "epoch": 2.5430336472140587, "percentage": 84.77, "elapsed_time": "8:51:40", "remaining_time": "1:35:29"} +{"current_steps": 5305, "total_steps": 6252, "loss": 0.7754, "learning_rate": 1.1117112901660193e-06, "epoch": 2.545432735560487, "percentage": 84.85, "elapsed_time": "8:51:59", "remaining_time": "1:34:58"} +{"current_steps": 5310, "total_steps": 6252, "loss": 0.9777, "learning_rate": 1.1004527655912383e-06, "epoch": 2.5478318239069155, "percentage": 84.93, "elapsed_time": "8:52:18", "remaining_time": "1:34:26"} +{"current_steps": 5315, "total_steps": 6252, "loss": 0.8786, "learning_rate": 1.0892444867101288e-06, "epoch": 2.550230912253344, "percentage": 85.01, "elapsed_time": "8:52:38", "remaining_time": "1:33:54"} +{"current_steps": 5320, "total_steps": 6252, "loss": 0.9006, "learning_rate": 1.0780865979414463e-06, "epoch": 2.552630000599772, "percentage": 85.09, "elapsed_time": "8:52:57", "remaining_time": "1:33:22"} +{"current_steps": 5325, "total_steps": 6252, "loss": 0.7912, "learning_rate": 1.0669792430546655e-06, "epoch": 2.5550290889462004, "percentage": 85.17, "elapsed_time": "8:53:18", "remaining_time": "1:32:50"} +{"current_steps": 5330, "total_steps": 6252, "loss": 0.8563, "learning_rate": 1.0559225651681332e-06, "epoch": 2.557428177292629, "percentage": 85.25, "elapsed_time": "8:53:39", "remaining_time": "1:32:18"} +{"current_steps": 5335, "total_steps": 6252, "loss": 0.8267, "learning_rate": 1.0449167067472205e-06, "epoch": 2.5598272656390573, "percentage": 85.33, "elapsed_time": "8:53:59", "remaining_time": "1:31:47"} +{"current_steps": 5340, "total_steps": 6252, "loss": 0.7603, "learning_rate": 1.0339618096024946e-06, "epoch": 2.5622263539854853, "percentage": 85.41, "elapsed_time": "8:54:17", "remaining_time": "1:31:14"} +{"current_steps": 5345, "total_steps": 6252, "loss": 0.9592, "learning_rate": 1.0230580148878777e-06, "epoch": 2.5646254423319137, "percentage": 85.49, "elapsed_time": "8:54:37", "remaining_time": "1:30:43"} +{"current_steps": 5350, "total_steps": 6252, "loss": 0.8984, "learning_rate": 1.0122054630988454e-06, "epoch": 2.567024530678342, "percentage": 85.57, "elapsed_time": "8:55:00", "remaining_time": "1:30:12"} +{"current_steps": 5355, "total_steps": 6252, "loss": 0.8046, "learning_rate": 1.0014042940706031e-06, "epoch": 2.5694236190247706, "percentage": 85.65, "elapsed_time": "8:55:22", "remaining_time": "1:29:40"} +{"current_steps": 5360, "total_steps": 6252, "loss": 0.727, "learning_rate": 9.9065464697629e-07, "epoch": 2.571822707371199, "percentage": 85.73, "elapsed_time": "8:55:43", "remaining_time": "1:29:09"} +{"current_steps": 5365, "total_steps": 6252, "loss": 0.7937, "learning_rate": 9.799566603251847e-07, "epoch": 2.5742217957176274, "percentage": 85.81, "elapsed_time": "8:56:03", "remaining_time": "1:28:37"} +{"current_steps": 5370, "total_steps": 6252, "loss": 0.7619, "learning_rate": 9.693104719609213e-07, "epoch": 2.576620884064056, "percentage": 85.89, "elapsed_time": "8:56:22", "remaining_time": "1:28:05"} +{"current_steps": 5375, "total_steps": 6252, "loss": 0.8086, "learning_rate": 9.587162190597104e-07, "epoch": 2.579019972410484, "percentage": 85.97, "elapsed_time": "8:56:43", "remaining_time": "1:27:34"} +{"current_steps": 5380, "total_steps": 6252, "loss": 0.9133, "learning_rate": 9.481740381285782e-07, "epoch": 2.5814190607569123, "percentage": 86.05, "elapsed_time": "8:57:03", "remaining_time": "1:27:02"} +{"current_steps": 5385, "total_steps": 6252, "loss": 0.8183, "learning_rate": 9.376840650035995e-07, "epoch": 2.5838181491033407, "percentage": 86.13, "elapsed_time": "8:57:25", "remaining_time": "1:26:31"} +{"current_steps": 5390, "total_steps": 6252, "loss": 0.7881, "learning_rate": 9.272464348481513e-07, "epoch": 2.586217237449769, "percentage": 86.21, "elapsed_time": "8:57:45", "remaining_time": "1:26:00"} +{"current_steps": 5395, "total_steps": 6252, "loss": 0.7716, "learning_rate": 9.168612821511729e-07, "epoch": 2.5886163257961976, "percentage": 86.29, "elapsed_time": "8:58:05", "remaining_time": "1:25:28"} +{"current_steps": 5400, "total_steps": 6252, "loss": 0.8143, "learning_rate": 9.065287407254292e-07, "epoch": 2.5910154141426256, "percentage": 86.37, "elapsed_time": "8:58:25", "remaining_time": "1:24:57"} +{"current_steps": 5400, "total_steps": 6252, "eval_loss": 0.9463847279548645, "epoch": 2.5910154141426256, "percentage": 86.37, "elapsed_time": "9:01:21", "remaining_time": "1:25:24"} +{"current_steps": 5405, "total_steps": 6252, "loss": 0.8354, "learning_rate": 8.962489437057892e-07, "epoch": 2.593414502489054, "percentage": 86.45, "elapsed_time": "9:02:17", "remaining_time": "1:24:58"} +{"current_steps": 5410, "total_steps": 6252, "loss": 0.757, "learning_rate": 8.860220235475136e-07, "epoch": 2.5958135908354825, "percentage": 86.53, "elapsed_time": "9:02:36", "remaining_time": "1:24:26"} +{"current_steps": 5415, "total_steps": 6252, "loss": 0.8845, "learning_rate": 8.758481120245355e-07, "epoch": 2.598212679181911, "percentage": 86.61, "elapsed_time": "9:02:54", "remaining_time": "1:23:55"} +{"current_steps": 5420, "total_steps": 6252, "loss": 0.8356, "learning_rate": 8.6572734022778e-07, "epoch": 2.6006117675283393, "percentage": 86.69, "elapsed_time": "9:03:15", "remaining_time": "1:23:23"} +{"current_steps": 5425, "total_steps": 6252, "loss": 0.8755, "learning_rate": 8.556598385634645e-07, "epoch": 2.6030108558747678, "percentage": 86.77, "elapsed_time": "9:03:37", "remaining_time": "1:22:52"} +{"current_steps": 5430, "total_steps": 6252, "loss": 0.8882, "learning_rate": 8.456457367514154e-07, "epoch": 2.605409944221196, "percentage": 86.85, "elapsed_time": "9:03:57", "remaining_time": "1:22:20"} +{"current_steps": 5435, "total_steps": 6252, "loss": 0.8723, "learning_rate": 8.356851638234087e-07, "epoch": 2.607809032567624, "percentage": 86.93, "elapsed_time": "9:04:18", "remaining_time": "1:21:49"} +{"current_steps": 5440, "total_steps": 6252, "loss": 0.7859, "learning_rate": 8.257782481214954e-07, "epoch": 2.6102081209140526, "percentage": 87.01, "elapsed_time": "9:04:38", "remaining_time": "1:21:17"} +{"current_steps": 5445, "total_steps": 6252, "loss": 0.8549, "learning_rate": 8.159251172963545e-07, "epoch": 2.612607209260481, "percentage": 87.09, "elapsed_time": "9:04:59", "remaining_time": "1:20:46"} +{"current_steps": 5450, "total_steps": 6252, "loss": 0.9265, "learning_rate": 8.061258983056452e-07, "epoch": 2.6150062976069095, "percentage": 87.17, "elapsed_time": "9:05:19", "remaining_time": "1:20:14"} +{"current_steps": 5455, "total_steps": 6252, "loss": 0.6679, "learning_rate": 7.963807174123772e-07, "epoch": 2.6174053859533375, "percentage": 87.25, "elapsed_time": "9:05:39", "remaining_time": "1:19:43"} +{"current_steps": 5460, "total_steps": 6252, "loss": 0.6948, "learning_rate": 7.866897001832696e-07, "epoch": 2.619804474299766, "percentage": 87.33, "elapsed_time": "9:05:58", "remaining_time": "1:19:11"} +{"current_steps": 5465, "total_steps": 6252, "loss": 0.7636, "learning_rate": 7.770529714871527e-07, "epoch": 2.6222035626461944, "percentage": 87.41, "elapsed_time": "9:06:21", "remaining_time": "1:18:40"} +{"current_steps": 5470, "total_steps": 6252, "loss": 0.9437, "learning_rate": 7.674706554933414e-07, "epoch": 2.624602650992623, "percentage": 87.49, "elapsed_time": "9:06:43", "remaining_time": "1:18:09"} +{"current_steps": 5475, "total_steps": 6252, "loss": 0.8655, "learning_rate": 7.579428756700463e-07, "epoch": 2.6270017393390512, "percentage": 87.57, "elapsed_time": "9:07:04", "remaining_time": "1:17:38"} +{"current_steps": 5480, "total_steps": 6252, "loss": 0.9146, "learning_rate": 7.484697547827763e-07, "epoch": 2.6294008276854797, "percentage": 87.65, "elapsed_time": "9:07:23", "remaining_time": "1:17:06"} +{"current_steps": 5485, "total_steps": 6252, "loss": 0.9243, "learning_rate": 7.390514148927619e-07, "epoch": 2.631799916031908, "percentage": 87.73, "elapsed_time": "9:07:45", "remaining_time": "1:16:35"} +{"current_steps": 5490, "total_steps": 6252, "loss": 0.812, "learning_rate": 7.296879773553784e-07, "epoch": 2.634199004378336, "percentage": 87.81, "elapsed_time": "9:08:03", "remaining_time": "1:16:04"} +{"current_steps": 5495, "total_steps": 6252, "loss": 0.9371, "learning_rate": 7.203795628185856e-07, "epoch": 2.6365980927247645, "percentage": 87.89, "elapsed_time": "9:08:24", "remaining_time": "1:15:33"} +{"current_steps": 5500, "total_steps": 6252, "loss": 0.8117, "learning_rate": 7.111262912213707e-07, "epoch": 2.638997181071193, "percentage": 87.97, "elapsed_time": "9:08:45", "remaining_time": "1:15:01"} +{"current_steps": 5500, "total_steps": 6252, "eval_loss": 0.9463163614273071, "epoch": 2.638997181071193, "percentage": 87.97, "elapsed_time": "9:11:41", "remaining_time": "1:15:25"} +{"current_steps": 5505, "total_steps": 6252, "loss": 0.7939, "learning_rate": 7.019282817922029e-07, "epoch": 2.6413962694176214, "percentage": 88.05, "elapsed_time": "9:11:59", "remaining_time": "1:14:54"} +{"current_steps": 5510, "total_steps": 6252, "loss": 0.7907, "learning_rate": 6.927856530474985e-07, "epoch": 2.6437953577640494, "percentage": 88.13, "elapsed_time": "9:12:20", "remaining_time": "1:14:22"} +{"current_steps": 5515, "total_steps": 6252, "loss": 0.9429, "learning_rate": 6.836985227900944e-07, "epoch": 2.646194446110478, "percentage": 88.21, "elapsed_time": "9:12:40", "remaining_time": "1:13:51"} +{"current_steps": 5520, "total_steps": 6252, "loss": 0.8834, "learning_rate": 6.746670081077266e-07, "epoch": 2.6485935344569063, "percentage": 88.29, "elapsed_time": "9:13:00", "remaining_time": "1:13:19"} +{"current_steps": 5525, "total_steps": 6252, "loss": 0.8487, "learning_rate": 6.656912253715281e-07, "epoch": 2.6509926228033347, "percentage": 88.37, "elapsed_time": "9:13:21", "remaining_time": "1:12:48"} +{"current_steps": 5530, "total_steps": 6252, "loss": 0.9643, "learning_rate": 6.567712902345208e-07, "epoch": 2.653391711149763, "percentage": 88.45, "elapsed_time": "9:13:42", "remaining_time": "1:12:17"} +{"current_steps": 5535, "total_steps": 6252, "loss": 0.8767, "learning_rate": 6.479073176301332e-07, "epoch": 2.6557907994961916, "percentage": 88.53, "elapsed_time": "9:14:01", "remaining_time": "1:11:46"} +{"current_steps": 5540, "total_steps": 6252, "loss": 0.8471, "learning_rate": 6.390994217707142e-07, "epoch": 2.65818988784262, "percentage": 88.61, "elapsed_time": "9:14:21", "remaining_time": "1:11:14"} +{"current_steps": 5545, "total_steps": 6252, "loss": 0.8318, "learning_rate": 6.303477161460647e-07, "epoch": 2.6605889761890484, "percentage": 88.69, "elapsed_time": "9:14:42", "remaining_time": "1:10:43"} +{"current_steps": 5550, "total_steps": 6252, "loss": 0.8511, "learning_rate": 6.216523135219715e-07, "epoch": 2.6629880645354764, "percentage": 88.77, "elapsed_time": "9:15:02", "remaining_time": "1:10:12"} +{"current_steps": 5555, "total_steps": 6252, "loss": 0.8708, "learning_rate": 6.130133259387633e-07, "epoch": 2.665387152881905, "percentage": 88.85, "elapsed_time": "9:15:23", "remaining_time": "1:09:41"} +{"current_steps": 5560, "total_steps": 6252, "loss": 0.7847, "learning_rate": 6.044308647098512e-07, "epoch": 2.6677862412283333, "percentage": 88.93, "elapsed_time": "9:15:43", "remaining_time": "1:09:09"} +{"current_steps": 5565, "total_steps": 6252, "loss": 0.9311, "learning_rate": 5.959050404203109e-07, "epoch": 2.6701853295747617, "percentage": 89.01, "elapsed_time": "9:16:05", "remaining_time": "1:08:38"} +{"current_steps": 5570, "total_steps": 6252, "loss": 0.8072, "learning_rate": 5.874359629254511e-07, "epoch": 2.6725844179211897, "percentage": 89.09, "elapsed_time": "9:16:24", "remaining_time": "1:08:07"} +{"current_steps": 5575, "total_steps": 6252, "loss": 0.8887, "learning_rate": 5.79023741349391e-07, "epoch": 2.674983506267618, "percentage": 89.17, "elapsed_time": "9:16:45", "remaining_time": "1:07:36"} +{"current_steps": 5580, "total_steps": 6252, "loss": 0.8971, "learning_rate": 5.706684840836674e-07, "epoch": 2.6773825946140466, "percentage": 89.25, "elapsed_time": "9:17:06", "remaining_time": "1:07:05"} +{"current_steps": 5585, "total_steps": 6252, "loss": 0.7582, "learning_rate": 5.623702987858293e-07, "epoch": 2.679781682960475, "percentage": 89.33, "elapsed_time": "9:17:29", "remaining_time": "1:06:34"} +{"current_steps": 5590, "total_steps": 6252, "loss": 0.7481, "learning_rate": 5.541292923780516e-07, "epoch": 2.6821807713069035, "percentage": 89.41, "elapsed_time": "9:17:50", "remaining_time": "1:06:03"} +{"current_steps": 5595, "total_steps": 6252, "loss": 0.8242, "learning_rate": 5.459455710457601e-07, "epoch": 2.684579859653332, "percentage": 89.49, "elapsed_time": "9:18:12", "remaining_time": "1:05:32"} +{"current_steps": 5600, "total_steps": 6252, "loss": 0.861, "learning_rate": 5.378192402362653e-07, "epoch": 2.6869789479997603, "percentage": 89.57, "elapsed_time": "9:18:32", "remaining_time": "1:05:01"} +{"current_steps": 5600, "total_steps": 6252, "eval_loss": 0.9463757276535034, "epoch": 2.6869789479997603, "percentage": 89.57, "elapsed_time": "9:21:27", "remaining_time": "1:05:22"} +{"current_steps": 5605, "total_steps": 6252, "loss": 0.6736, "learning_rate": 5.29750404657392e-07, "epoch": 2.6893780363461883, "percentage": 89.65, "elapsed_time": "9:22:24", "remaining_time": "1:04:55"} +{"current_steps": 5610, "total_steps": 6252, "loss": 0.8122, "learning_rate": 5.217391682761469e-07, "epoch": 2.6917771246926168, "percentage": 89.73, "elapsed_time": "9:22:46", "remaining_time": "1:04:24"} +{"current_steps": 5615, "total_steps": 6252, "loss": 0.8597, "learning_rate": 5.137856343173675e-07, "epoch": 2.694176213039045, "percentage": 89.81, "elapsed_time": "9:23:06", "remaining_time": "1:03:52"} +{"current_steps": 5620, "total_steps": 6252, "loss": 0.6924, "learning_rate": 5.058899052623933e-07, "epoch": 2.6965753013854736, "percentage": 89.89, "elapsed_time": "9:23:26", "remaining_time": "1:03:21"} +{"current_steps": 5625, "total_steps": 6252, "loss": 0.9464, "learning_rate": 4.980520828477509e-07, "epoch": 2.6989743897319016, "percentage": 89.97, "elapsed_time": "9:23:46", "remaining_time": "1:02:50"} +{"current_steps": 5630, "total_steps": 6252, "loss": 0.8155, "learning_rate": 4.902722680638356e-07, "epoch": 2.70137347807833, "percentage": 90.05, "elapsed_time": "9:24:08", "remaining_time": "1:02:19"} +{"current_steps": 5635, "total_steps": 6252, "loss": 0.8895, "learning_rate": 4.825505611536163e-07, "epoch": 2.7037725664247585, "percentage": 90.13, "elapsed_time": "9:24:27", "remaining_time": "1:01:48"} +{"current_steps": 5640, "total_steps": 6252, "loss": 0.9353, "learning_rate": 4.7488706161134266e-07, "epoch": 2.706171654771187, "percentage": 90.21, "elapsed_time": "9:24:47", "remaining_time": "1:01:17"} +{"current_steps": 5645, "total_steps": 6252, "loss": 0.8699, "learning_rate": 4.672818681812591e-07, "epoch": 2.7085707431176154, "percentage": 90.29, "elapsed_time": "9:25:08", "remaining_time": "1:00:46"} +{"current_steps": 5650, "total_steps": 6252, "loss": 0.9011, "learning_rate": 4.597350788563376e-07, "epoch": 2.710969831464044, "percentage": 90.37, "elapsed_time": "9:25:27", "remaining_time": "1:00:14"} +{"current_steps": 5655, "total_steps": 6252, "loss": 0.8674, "learning_rate": 4.522467908770106e-07, "epoch": 2.7133689198104722, "percentage": 90.45, "elapsed_time": "9:25:47", "remaining_time": "0:59:43"} +{"current_steps": 5660, "total_steps": 6252, "loss": 0.7725, "learning_rate": 4.448171007299229e-07, "epoch": 2.7157680081569002, "percentage": 90.53, "elapsed_time": "9:26:09", "remaining_time": "0:59:12"} +{"current_steps": 5665, "total_steps": 6252, "loss": 0.8388, "learning_rate": 4.3744610414668265e-07, "epoch": 2.7181670965033287, "percentage": 90.61, "elapsed_time": "9:26:28", "remaining_time": "0:58:41"} +{"current_steps": 5670, "total_steps": 6252, "loss": 0.8038, "learning_rate": 4.3013389610263636e-07, "epoch": 2.720566184849757, "percentage": 90.69, "elapsed_time": "9:26:49", "remaining_time": "0:58:10"} +{"current_steps": 5675, "total_steps": 6252, "loss": 0.8106, "learning_rate": 4.2288057081563247e-07, "epoch": 2.7229652731961855, "percentage": 90.77, "elapsed_time": "9:27:10", "remaining_time": "0:57:40"} +{"current_steps": 5680, "total_steps": 6252, "loss": 0.7503, "learning_rate": 4.156862217448215e-07, "epoch": 2.725364361542614, "percentage": 90.85, "elapsed_time": "9:27:31", "remaining_time": "0:57:09"} +{"current_steps": 5685, "total_steps": 6252, "loss": 0.8085, "learning_rate": 4.0855094158944066e-07, "epoch": 2.727763449889042, "percentage": 90.93, "elapsed_time": "9:27:50", "remaining_time": "0:56:38"} +{"current_steps": 5690, "total_steps": 6252, "loss": 0.781, "learning_rate": 4.014748222876258e-07, "epoch": 2.7301625382354704, "percentage": 91.01, "elapsed_time": "9:28:10", "remaining_time": "0:56:07"} +{"current_steps": 5695, "total_steps": 6252, "loss": 0.8548, "learning_rate": 3.9445795501522276e-07, "epoch": 2.732561626581899, "percentage": 91.09, "elapsed_time": "9:28:30", "remaining_time": "0:55:36"} +{"current_steps": 5700, "total_steps": 6252, "loss": 0.8415, "learning_rate": 3.875004301846186e-07, "epoch": 2.7349607149283273, "percentage": 91.17, "elapsed_time": "9:28:49", "remaining_time": "0:55:05"} +{"current_steps": 5700, "total_steps": 6252, "eval_loss": 0.946337103843689, "epoch": 2.7349607149283273, "percentage": 91.17, "elapsed_time": "9:31:44", "remaining_time": "0:55:22"} +{"current_steps": 5705, "total_steps": 6252, "loss": 0.8101, "learning_rate": 3.8060233744356634e-07, "epoch": 2.7373598032747557, "percentage": 91.25, "elapsed_time": "9:32:04", "remaining_time": "0:54:51"} +{"current_steps": 5710, "total_steps": 6252, "loss": 0.8063, "learning_rate": 3.737637656740423e-07, "epoch": 2.739758891621184, "percentage": 91.33, "elapsed_time": "9:32:24", "remaining_time": "0:54:20"} +{"current_steps": 5715, "total_steps": 6252, "loss": 0.7506, "learning_rate": 3.6698480299109273e-07, "epoch": 2.7421579799676126, "percentage": 91.41, "elapsed_time": "9:32:44", "remaining_time": "0:53:48"} +{"current_steps": 5720, "total_steps": 6252, "loss": 0.8546, "learning_rate": 3.602655367416968e-07, "epoch": 2.7445570683140406, "percentage": 91.49, "elapsed_time": "9:33:04", "remaining_time": "0:53:18"} +{"current_steps": 5725, "total_steps": 6252, "loss": 0.8406, "learning_rate": 3.5360605350365006e-07, "epoch": 2.746956156660469, "percentage": 91.57, "elapsed_time": "9:33:27", "remaining_time": "0:52:47"} +{"current_steps": 5730, "total_steps": 6252, "loss": 0.8724, "learning_rate": 3.470064390844402e-07, "epoch": 2.7493552450068974, "percentage": 91.65, "elapsed_time": "9:33:48", "remaining_time": "0:52:16"} +{"current_steps": 5735, "total_steps": 6252, "loss": 0.7694, "learning_rate": 3.404667785201454e-07, "epoch": 2.751754333353326, "percentage": 91.73, "elapsed_time": "9:34:08", "remaining_time": "0:51:45"} +{"current_steps": 5740, "total_steps": 6252, "loss": 0.8349, "learning_rate": 3.3398715607433794e-07, "epoch": 2.754153421699754, "percentage": 91.81, "elapsed_time": "9:34:29", "remaining_time": "0:51:14"} +{"current_steps": 5745, "total_steps": 6252, "loss": 0.8109, "learning_rate": 3.2756765523700165e-07, "epoch": 2.7565525100461823, "percentage": 91.89, "elapsed_time": "9:34:50", "remaining_time": "0:50:43"} +{"current_steps": 5750, "total_steps": 6252, "loss": 0.7918, "learning_rate": 3.2120835872344547e-07, "epoch": 2.7589515983926107, "percentage": 91.97, "elapsed_time": "9:35:11", "remaining_time": "0:50:12"} +{"current_steps": 5755, "total_steps": 6252, "loss": 0.7042, "learning_rate": 3.1490934847325406e-07, "epoch": 2.761350686739039, "percentage": 92.05, "elapsed_time": "9:35:33", "remaining_time": "0:49:42"} +{"current_steps": 5760, "total_steps": 6252, "loss": 0.8729, "learning_rate": 3.0867070564921665e-07, "epoch": 2.7637497750854676, "percentage": 92.13, "elapsed_time": "9:35:52", "remaining_time": "0:49:11"} +{"current_steps": 5765, "total_steps": 6252, "loss": 0.8672, "learning_rate": 3.0249251063629137e-07, "epoch": 2.766148863431896, "percentage": 92.21, "elapsed_time": "9:36:11", "remaining_time": "0:48:40"} +{"current_steps": 5770, "total_steps": 6252, "loss": 0.8593, "learning_rate": 2.9637484304056387e-07, "epoch": 2.7685479517783245, "percentage": 92.29, "elapsed_time": "9:36:31", "remaining_time": "0:48:09"} +{"current_steps": 5775, "total_steps": 6252, "loss": 0.7651, "learning_rate": 2.9031778168822466e-07, "epoch": 2.7709470401247525, "percentage": 92.37, "elapsed_time": "9:36:49", "remaining_time": "0:47:38"} +{"current_steps": 5780, "total_steps": 6252, "loss": 0.7516, "learning_rate": 2.843214046245507e-07, "epoch": 2.773346128471181, "percentage": 92.45, "elapsed_time": "9:37:09", "remaining_time": "0:47:07"} +{"current_steps": 5785, "total_steps": 6252, "loss": 0.834, "learning_rate": 2.783857891129055e-07, "epoch": 2.7757452168176093, "percentage": 92.53, "elapsed_time": "9:37:30", "remaining_time": "0:46:37"} +{"current_steps": 5790, "total_steps": 6252, "loss": 0.842, "learning_rate": 2.725110116337354e-07, "epoch": 2.7781443051640378, "percentage": 92.61, "elapsed_time": "9:37:50", "remaining_time": "0:46:06"} +{"current_steps": 5795, "total_steps": 6252, "loss": 0.8287, "learning_rate": 2.6669714788358946e-07, "epoch": 2.7805433935104658, "percentage": 92.69, "elapsed_time": "9:38:10", "remaining_time": "0:45:35"} +{"current_steps": 5800, "total_steps": 6252, "loss": 0.7846, "learning_rate": 2.60944272774144e-07, "epoch": 2.782942481856894, "percentage": 92.77, "elapsed_time": "9:38:30", "remaining_time": "0:45:05"} +{"current_steps": 5800, "total_steps": 6252, "eval_loss": 0.946326732635498, "epoch": 2.782942481856894, "percentage": 92.77, "elapsed_time": "9:41:26", "remaining_time": "0:45:18"} +{"current_steps": 5805, "total_steps": 6252, "loss": 0.8889, "learning_rate": 2.552524604312351e-07, "epoch": 2.7853415702033226, "percentage": 92.85, "elapsed_time": "9:42:21", "remaining_time": "0:44:50"} +{"current_steps": 5810, "total_steps": 6252, "loss": 0.8157, "learning_rate": 2.4962178419390357e-07, "epoch": 2.787740658549751, "percentage": 92.93, "elapsed_time": "9:42:42", "remaining_time": "0:44:19"} +{"current_steps": 5815, "total_steps": 6252, "loss": 0.7996, "learning_rate": 2.440523166134562e-07, "epoch": 2.7901397468961795, "percentage": 93.01, "elapsed_time": "9:43:00", "remaining_time": "0:43:48"} +{"current_steps": 5820, "total_steps": 6252, "loss": 0.8163, "learning_rate": 2.3854412945251757e-07, "epoch": 2.792538835242608, "percentage": 93.09, "elapsed_time": "9:43:22", "remaining_time": "0:43:18"} +{"current_steps": 5825, "total_steps": 6252, "loss": 0.7702, "learning_rate": 2.3309729368412193e-07, "epoch": 2.7949379235890364, "percentage": 93.17, "elapsed_time": "9:43:42", "remaining_time": "0:42:47"} +{"current_steps": 5830, "total_steps": 6252, "loss": 0.8732, "learning_rate": 2.2771187949078455e-07, "epoch": 2.7973370119354644, "percentage": 93.25, "elapsed_time": "9:44:02", "remaining_time": "0:42:16"} +{"current_steps": 5835, "total_steps": 6252, "loss": 0.7786, "learning_rate": 2.223879562636061e-07, "epoch": 2.799736100281893, "percentage": 93.33, "elapsed_time": "9:44:25", "remaining_time": "0:41:45"} +{"current_steps": 5840, "total_steps": 6252, "loss": 0.7568, "learning_rate": 2.1712559260137434e-07, "epoch": 2.8021351886283212, "percentage": 93.41, "elapsed_time": "9:44:44", "remaining_time": "0:41:15"} +{"current_steps": 5845, "total_steps": 6252, "loss": 1.008, "learning_rate": 2.1192485630968374e-07, "epoch": 2.8045342769747497, "percentage": 93.49, "elapsed_time": "9:45:02", "remaining_time": "0:40:44"} +{"current_steps": 5850, "total_steps": 6252, "loss": 0.8665, "learning_rate": 2.0678581440005617e-07, "epoch": 2.806933365321178, "percentage": 93.57, "elapsed_time": "9:45:22", "remaining_time": "0:40:13"} +{"current_steps": 5855, "total_steps": 6252, "loss": 0.8216, "learning_rate": 2.0170853308908388e-07, "epoch": 2.809332453667606, "percentage": 93.65, "elapsed_time": "9:45:43", "remaining_time": "0:39:42"} +{"current_steps": 5860, "total_steps": 6252, "loss": 0.7792, "learning_rate": 1.966930777975734e-07, "epoch": 2.8117315420140345, "percentage": 93.73, "elapsed_time": "9:46:03", "remaining_time": "0:39:12"} +{"current_steps": 5865, "total_steps": 6252, "loss": 0.826, "learning_rate": 1.9173951314970018e-07, "epoch": 2.814130630360463, "percentage": 93.81, "elapsed_time": "9:46:23", "remaining_time": "0:38:41"} +{"current_steps": 5870, "total_steps": 6252, "loss": 0.8359, "learning_rate": 1.8684790297218037e-07, "epoch": 2.8165297187068914, "percentage": 93.89, "elapsed_time": "9:46:43", "remaining_time": "0:38:10"} +{"current_steps": 5875, "total_steps": 6252, "loss": 0.8419, "learning_rate": 1.8201831029344585e-07, "epoch": 2.81892880705332, "percentage": 93.97, "elapsed_time": "9:47:02", "remaining_time": "0:37:40"} +{"current_steps": 5880, "total_steps": 6252, "loss": 0.8791, "learning_rate": 1.7725079734283223e-07, "epoch": 2.8213278953997483, "percentage": 94.05, "elapsed_time": "9:47:23", "remaining_time": "0:37:09"} +{"current_steps": 5885, "total_steps": 6252, "loss": 0.8924, "learning_rate": 1.7254542554977771e-07, "epoch": 2.8237269837461767, "percentage": 94.13, "elapsed_time": "9:47:44", "remaining_time": "0:36:39"} +{"current_steps": 5890, "total_steps": 6252, "loss": 0.9084, "learning_rate": 1.679022555430304e-07, "epoch": 2.8261260720926047, "percentage": 94.21, "elapsed_time": "9:48:05", "remaining_time": "0:36:08"} +{"current_steps": 5895, "total_steps": 6252, "loss": 0.8278, "learning_rate": 1.6332134714986848e-07, "epoch": 2.828525160439033, "percentage": 94.29, "elapsed_time": "9:48:27", "remaining_time": "0:35:38"} +{"current_steps": 5900, "total_steps": 6252, "loss": 0.7605, "learning_rate": 1.5880275939533063e-07, "epoch": 2.8309242487854616, "percentage": 94.37, "elapsed_time": "9:48:49", "remaining_time": "0:35:07"} +{"current_steps": 5900, "total_steps": 6252, "eval_loss": 0.9463862776756287, "epoch": 2.8309242487854616, "percentage": 94.37, "elapsed_time": "9:51:46", "remaining_time": "0:35:18"} +{"current_steps": 5905, "total_steps": 6252, "loss": 0.9009, "learning_rate": 1.5434655050145077e-07, "epoch": 2.83332333713189, "percentage": 94.45, "elapsed_time": "9:52:06", "remaining_time": "0:34:47"} +{"current_steps": 5910, "total_steps": 6252, "loss": 0.8512, "learning_rate": 1.499527778865123e-07, "epoch": 2.835722425478318, "percentage": 94.53, "elapsed_time": "9:52:29", "remaining_time": "0:34:17"} +{"current_steps": 5915, "total_steps": 6252, "loss": 0.6809, "learning_rate": 1.4562149816430616e-07, "epoch": 2.8381215138247464, "percentage": 94.61, "elapsed_time": "9:52:49", "remaining_time": "0:33:46"} +{"current_steps": 5920, "total_steps": 6252, "loss": 0.8097, "learning_rate": 1.413527671434023e-07, "epoch": 2.840520602171175, "percentage": 94.69, "elapsed_time": "9:53:10", "remaining_time": "0:33:15"} +{"current_steps": 5925, "total_steps": 6252, "loss": 0.8181, "learning_rate": 1.3714663982642984e-07, "epoch": 2.8429196905176033, "percentage": 94.77, "elapsed_time": "9:53:31", "remaining_time": "0:32:45"} +{"current_steps": 5930, "total_steps": 6252, "loss": 0.8673, "learning_rate": 1.3300317040936927e-07, "epoch": 2.8453187788640317, "percentage": 94.85, "elapsed_time": "9:53:50", "remaining_time": "0:32:14"} +{"current_steps": 5935, "total_steps": 6252, "loss": 0.8847, "learning_rate": 1.2892241228085355e-07, "epoch": 2.84771786721046, "percentage": 94.93, "elapsed_time": "9:54:11", "remaining_time": "0:31:44"} +{"current_steps": 5940, "total_steps": 6252, "loss": 0.8172, "learning_rate": 1.2490441802148036e-07, "epoch": 2.8501169555568886, "percentage": 95.01, "elapsed_time": "9:54:32", "remaining_time": "0:31:13"} +{"current_steps": 5945, "total_steps": 6252, "loss": 0.8514, "learning_rate": 1.2094923940313308e-07, "epoch": 2.8525160439033166, "percentage": 95.09, "elapsed_time": "9:54:52", "remaining_time": "0:30:43"} +{"current_steps": 5950, "total_steps": 6252, "loss": 0.8143, "learning_rate": 1.1705692738831654e-07, "epoch": 2.854915132249745, "percentage": 95.17, "elapsed_time": "9:55:12", "remaining_time": "0:30:12"} +{"current_steps": 5955, "total_steps": 6252, "loss": 0.8274, "learning_rate": 1.1322753212949844e-07, "epoch": 2.8573142205961735, "percentage": 95.25, "elapsed_time": "9:55:31", "remaining_time": "0:29:42"} +{"current_steps": 5960, "total_steps": 6252, "loss": 0.8353, "learning_rate": 1.0946110296846447e-07, "epoch": 2.859713308942602, "percentage": 95.33, "elapsed_time": "9:55:52", "remaining_time": "0:29:11"} +{"current_steps": 5965, "total_steps": 6252, "loss": 0.8685, "learning_rate": 1.057576884356798e-07, "epoch": 2.8621123972890303, "percentage": 95.41, "elapsed_time": "9:56:14", "remaining_time": "0:28:41"} +{"current_steps": 5970, "total_steps": 6252, "loss": 0.8467, "learning_rate": 1.0211733624966802e-07, "epoch": 2.8645114856354583, "percentage": 95.49, "elapsed_time": "9:56:33", "remaining_time": "0:28:10"} +{"current_steps": 5975, "total_steps": 6252, "loss": 0.8935, "learning_rate": 9.854009331639214e-08, "epoch": 2.8669105739818868, "percentage": 95.57, "elapsed_time": "9:56:52", "remaining_time": "0:27:40"} +{"current_steps": 5980, "total_steps": 6252, "loss": 0.8584, "learning_rate": 9.502600572865284e-08, "epoch": 2.869309662328315, "percentage": 95.65, "elapsed_time": "9:57:15", "remaining_time": "0:27:09"} +{"current_steps": 5985, "total_steps": 6252, "loss": 0.7601, "learning_rate": 9.157511876549286e-08, "epoch": 2.8717087506747436, "percentage": 95.73, "elapsed_time": "9:57:36", "remaining_time": "0:26:39"} +{"current_steps": 5990, "total_steps": 6252, "loss": 0.8792, "learning_rate": 8.818747689161688e-08, "epoch": 2.874107839021172, "percentage": 95.81, "elapsed_time": "9:57:57", "remaining_time": "0:26:09"} +{"current_steps": 5995, "total_steps": 6252, "loss": 0.7975, "learning_rate": 8.486312375681205e-08, "epoch": 2.8765069273676005, "percentage": 95.89, "elapsed_time": "9:58:19", "remaining_time": "0:25:38"} +{"current_steps": 6000, "total_steps": 6252, "loss": 0.8721, "learning_rate": 8.160210219539333e-08, "epoch": 2.878906015714029, "percentage": 95.97, "elapsed_time": "9:58:40", "remaining_time": "0:25:08"} +{"current_steps": 6000, "total_steps": 6252, "eval_loss": 0.9464093446731567, "epoch": 2.878906015714029, "percentage": 95.97, "elapsed_time": "10:01:44", "remaining_time": "0:25:16"} +{"current_steps": 6005, "total_steps": 6252, "loss": 0.8902, "learning_rate": 7.840445422564735e-08, "epoch": 2.881305104060457, "percentage": 96.05, "elapsed_time": "10:02:42", "remaining_time": "0:24:47"} +{"current_steps": 6010, "total_steps": 6252, "loss": 0.8215, "learning_rate": 7.527022104928893e-08, "epoch": 2.8837041924068854, "percentage": 96.13, "elapsed_time": "10:03:02", "remaining_time": "0:24:16"} +{"current_steps": 6015, "total_steps": 6252, "loss": 0.8512, "learning_rate": 7.219944305093596e-08, "epoch": 2.886103280753314, "percentage": 96.21, "elapsed_time": "10:03:23", "remaining_time": "0:23:46"} +{"current_steps": 6020, "total_steps": 6252, "loss": 0.8271, "learning_rate": 6.919215979758476e-08, "epoch": 2.8885023690997422, "percentage": 96.29, "elapsed_time": "10:03:42", "remaining_time": "0:23:15"} +{"current_steps": 6025, "total_steps": 6252, "loss": 0.7854, "learning_rate": 6.624841003810056e-08, "epoch": 2.89090145744617, "percentage": 96.37, "elapsed_time": "10:04:02", "remaining_time": "0:22:45"} +{"current_steps": 6030, "total_steps": 6252, "loss": 0.8432, "learning_rate": 6.336823170272011e-08, "epoch": 2.8933005457925987, "percentage": 96.45, "elapsed_time": "10:04:21", "remaining_time": "0:22:14"} +{"current_steps": 6035, "total_steps": 6252, "loss": 0.872, "learning_rate": 6.055166190256145e-08, "epoch": 2.895699634139027, "percentage": 96.53, "elapsed_time": "10:04:41", "remaining_time": "0:21:44"} +{"current_steps": 6040, "total_steps": 6252, "loss": 0.8188, "learning_rate": 5.779873692914606e-08, "epoch": 2.8980987224854555, "percentage": 96.61, "elapsed_time": "10:05:02", "remaining_time": "0:21:14"} +{"current_steps": 6045, "total_steps": 6252, "loss": 0.7619, "learning_rate": 5.5109492253933025e-08, "epoch": 2.900497810831884, "percentage": 96.69, "elapsed_time": "10:05:23", "remaining_time": "0:20:43"} +{"current_steps": 6050, "total_steps": 6252, "loss": 0.704, "learning_rate": 5.2483962527857813e-08, "epoch": 2.9028968991783124, "percentage": 96.77, "elapsed_time": "10:05:44", "remaining_time": "0:20:13"} +{"current_steps": 6055, "total_steps": 6252, "loss": 0.7787, "learning_rate": 4.992218158088979e-08, "epoch": 2.905295987524741, "percentage": 96.85, "elapsed_time": "10:06:03", "remaining_time": "0:19:43"} +{"current_steps": 6060, "total_steps": 6252, "loss": 0.8102, "learning_rate": 4.7424182421594854e-08, "epoch": 2.907695075871169, "percentage": 96.93, "elapsed_time": "10:06:24", "remaining_time": "0:19:12"} +{"current_steps": 6065, "total_steps": 6252, "loss": 0.8945, "learning_rate": 4.498999723670905e-08, "epoch": 2.9100941642175973, "percentage": 97.01, "elapsed_time": "10:06:44", "remaining_time": "0:18:42"} +{"current_steps": 6070, "total_steps": 6252, "loss": 0.8516, "learning_rate": 4.2619657390726154e-08, "epoch": 2.9124932525640257, "percentage": 97.09, "elapsed_time": "10:07:05", "remaining_time": "0:18:12"} +{"current_steps": 6075, "total_steps": 6252, "loss": 0.7551, "learning_rate": 4.0313193425492446e-08, "epoch": 2.914892340910454, "percentage": 97.17, "elapsed_time": "10:07:26", "remaining_time": "0:17:41"} +{"current_steps": 6080, "total_steps": 6252, "loss": 0.8393, "learning_rate": 3.8070635059811455e-08, "epoch": 2.917291429256882, "percentage": 97.25, "elapsed_time": "10:07:47", "remaining_time": "0:17:11"} +{"current_steps": 6085, "total_steps": 6252, "loss": 0.8361, "learning_rate": 3.589201118906427e-08, "epoch": 2.9196905176033106, "percentage": 97.33, "elapsed_time": "10:08:07", "remaining_time": "0:16:41"} +{"current_steps": 6090, "total_steps": 6252, "loss": 0.8572, "learning_rate": 3.3777349884834275e-08, "epoch": 2.922089605949739, "percentage": 97.41, "elapsed_time": "10:08:29", "remaining_time": "0:16:11"} +{"current_steps": 6095, "total_steps": 6252, "loss": 0.8325, "learning_rate": 3.1726678394547464e-08, "epoch": 2.9244886942961674, "percentage": 97.49, "elapsed_time": "10:08:51", "remaining_time": "0:15:41"} +{"current_steps": 6100, "total_steps": 6252, "loss": 0.8566, "learning_rate": 2.9740023141120455e-08, "epoch": 2.926887782642596, "percentage": 97.57, "elapsed_time": "10:09:11", "remaining_time": "0:15:10"} +{"current_steps": 6100, "total_steps": 6252, "eval_loss": 0.9463550448417664, "epoch": 2.926887782642596, "percentage": 97.57, "elapsed_time": "10:12:10", "remaining_time": "0:15:15"} +{"current_steps": 6105, "total_steps": 6252, "loss": 0.8511, "learning_rate": 2.7817409722621368e-08, "epoch": 2.9292868709890243, "percentage": 97.65, "elapsed_time": "10:12:32", "remaining_time": "0:14:44"} +{"current_steps": 6110, "total_steps": 6252, "loss": 1.0181, "learning_rate": 2.5958862911935613e-08, "epoch": 2.9316859593354527, "percentage": 97.73, "elapsed_time": "10:12:52", "remaining_time": "0:14:14"} +{"current_steps": 6115, "total_steps": 6252, "loss": 0.7093, "learning_rate": 2.4164406656453364e-08, "epoch": 2.9340850476818807, "percentage": 97.81, "elapsed_time": "10:13:13", "remaining_time": "0:13:44"} +{"current_steps": 6120, "total_steps": 6252, "loss": 0.7972, "learning_rate": 2.2434064077755945e-08, "epoch": 2.936484136028309, "percentage": 97.89, "elapsed_time": "10:13:32", "remaining_time": "0:13:13"} +{"current_steps": 6125, "total_steps": 6252, "loss": 0.9193, "learning_rate": 2.076785747131993e-08, "epoch": 2.9388832243747376, "percentage": 97.97, "elapsed_time": "10:13:53", "remaining_time": "0:12:43"} +{"current_steps": 6130, "total_steps": 6252, "loss": 0.7502, "learning_rate": 1.9165808306228496e-08, "epoch": 2.941282312721166, "percentage": 98.05, "elapsed_time": "10:14:14", "remaining_time": "0:12:13"} +{"current_steps": 6135, "total_steps": 6252, "loss": 0.8204, "learning_rate": 1.7627937224897197e-08, "epoch": 2.9436814010675945, "percentage": 98.13, "elapsed_time": "10:14:33", "remaining_time": "0:11:43"} +{"current_steps": 6140, "total_steps": 6252, "loss": 0.8157, "learning_rate": 1.615426404280529e-08, "epoch": 2.9460804894140225, "percentage": 98.21, "elapsed_time": "10:14:55", "remaining_time": "0:11:13"} +{"current_steps": 6145, "total_steps": 6252, "loss": 0.8643, "learning_rate": 1.474480774824205e-08, "epoch": 2.948479577760451, "percentage": 98.29, "elapsed_time": "10:15:16", "remaining_time": "0:10:42"} +{"current_steps": 6150, "total_steps": 6252, "loss": 0.8144, "learning_rate": 1.3399586502062523e-08, "epoch": 2.9508786661068793, "percentage": 98.37, "elapsed_time": "10:15:36", "remaining_time": "0:10:12"} +{"current_steps": 6155, "total_steps": 6252, "loss": 0.8754, "learning_rate": 1.2118617637451035e-08, "epoch": 2.9532777544533078, "percentage": 98.45, "elapsed_time": "10:15:56", "remaining_time": "0:09:42"} +{"current_steps": 6160, "total_steps": 6252, "loss": 0.8617, "learning_rate": 1.090191765970139e-08, "epoch": 2.955676842799736, "percentage": 98.53, "elapsed_time": "10:16:17", "remaining_time": "0:09:12"} +{"current_steps": 6165, "total_steps": 6252, "loss": 0.778, "learning_rate": 9.749502246000352e-09, "epoch": 2.9580759311461646, "percentage": 98.61, "elapsed_time": "10:16:37", "remaining_time": "0:08:42"} +{"current_steps": 6170, "total_steps": 6252, "loss": 0.8113, "learning_rate": 8.661386245229498e-09, "epoch": 2.960475019492593, "percentage": 98.69, "elapsed_time": "10:16:58", "remaining_time": "0:08:11"} +{"current_steps": 6175, "total_steps": 6252, "loss": 0.8138, "learning_rate": 7.637583677771453e-09, "epoch": 2.962874107839021, "percentage": 98.77, "elapsed_time": "10:17:19", "remaining_time": "0:07:41"} +{"current_steps": 6180, "total_steps": 6252, "loss": 0.7571, "learning_rate": 6.678107735328398e-09, "epoch": 2.9652731961854495, "percentage": 98.85, "elapsed_time": "10:17:41", "remaining_time": "0:07:11"} +{"current_steps": 6185, "total_steps": 6252, "loss": 0.7821, "learning_rate": 5.782970780755515e-09, "epoch": 2.967672284531878, "percentage": 98.93, "elapsed_time": "10:18:02", "remaining_time": "0:06:41"} +{"current_steps": 6190, "total_steps": 6252, "loss": 0.8735, "learning_rate": 4.952184347898903e-09, "epoch": 2.9700713728783064, "percentage": 99.01, "elapsed_time": "10:18:22", "remaining_time": "0:06:11"} +{"current_steps": 6195, "total_steps": 6252, "loss": 0.7953, "learning_rate": 4.1857591414468106e-09, "epoch": 2.9724704612247344, "percentage": 99.09, "elapsed_time": "10:18:42", "remaining_time": "0:05:41"} +{"current_steps": 6200, "total_steps": 6252, "loss": 0.7978, "learning_rate": 3.4837050367936275e-09, "epoch": 2.974869549571163, "percentage": 99.17, "elapsed_time": "10:19:03", "remaining_time": "0:05:11"} +{"current_steps": 6200, "total_steps": 6252, "eval_loss": 0.946397602558136, "epoch": 2.974869549571163, "percentage": 99.17, "elapsed_time": "10:21:59", "remaining_time": "0:05:13"} +{"current_steps": 6205, "total_steps": 6252, "loss": 0.8122, "learning_rate": 2.846031079912215e-09, "epoch": 2.977268637917591, "percentage": 99.25, "elapsed_time": "10:22:56", "remaining_time": "0:04:43"} +{"current_steps": 6210, "total_steps": 6252, "loss": 0.8337, "learning_rate": 2.2727454872351062e-09, "epoch": 2.9796677262640197, "percentage": 99.33, "elapsed_time": "10:23:16", "remaining_time": "0:04:12"} +{"current_steps": 6215, "total_steps": 6252, "loss": 0.8998, "learning_rate": 1.7638556455518152e-09, "epoch": 2.982066814610448, "percentage": 99.41, "elapsed_time": "10:23:37", "remaining_time": "0:03:42"} +{"current_steps": 6220, "total_steps": 6252, "loss": 0.7873, "learning_rate": 1.3193681119116897e-09, "epoch": 2.9844659029568765, "percentage": 99.49, "elapsed_time": "10:23:57", "remaining_time": "0:03:12"} +{"current_steps": 6225, "total_steps": 6252, "loss": 0.7989, "learning_rate": 9.3928861353898e-10, "epoch": 2.986864991303305, "percentage": 99.57, "elapsed_time": "10:24:17", "remaining_time": "0:02:42"} +{"current_steps": 6230, "total_steps": 6252, "loss": 0.9234, "learning_rate": 6.236220477612298e-10, "epoch": 2.989264079649733, "percentage": 99.65, "elapsed_time": "10:24:38", "remaining_time": "0:02:12"} +{"current_steps": 6235, "total_steps": 6252, "loss": 0.7815, "learning_rate": 3.723724819443275e-10, "epoch": 2.9916631679961614, "percentage": 99.73, "elapsed_time": "10:24:58", "remaining_time": "0:01:42"} +{"current_steps": 6240, "total_steps": 6252, "loss": 0.6956, "learning_rate": 1.8554315344088136e-10, "epoch": 2.99406225634259, "percentage": 99.81, "elapsed_time": "10:25:21", "remaining_time": "0:01:12"} +{"current_steps": 6245, "total_steps": 6252, "loss": 0.794, "learning_rate": 6.313646954747565e-11, "epoch": 2.9964613446890183, "percentage": 99.89, "elapsed_time": "10:25:40", "remaining_time": "0:00:42"} +{"current_steps": 6250, "total_steps": 6252, "loss": 0.7592, "learning_rate": 5.154007475249856e-12, "epoch": 2.9988604330354467, "percentage": 99.97, "elapsed_time": "10:26:03", "remaining_time": "0:00:12"} +{"current_steps": 6252, "total_steps": 6252, "epoch": 2.9998200683740177, "percentage": 100.0, "elapsed_time": "10:26:45", "remaining_time": "0:00:00"}