hackhomer76
commited on
Commit
•
8ea6169
0
Parent(s):
Add inference endpoint handler
Browse files- config.json +11 -0
- handler.py +122 -0
config.json
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"task_type": "text-generation",
|
3 |
+
"framework": "pytorch",
|
4 |
+
"requirements": [
|
5 |
+
"torch>=2.0.0",
|
6 |
+
"transformers>=4.30.0",
|
7 |
+
"opencc>=1.1.1",
|
8 |
+
"jieba>=0.42.1"
|
9 |
+
],
|
10 |
+
"handler": "handler:EndpointHandler"
|
11 |
+
}
|
handler.py
ADDED
@@ -0,0 +1,122 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# handler.py
|
2 |
+
import torch
|
3 |
+
from transformers import AutoTokenizer, AutoModel
|
4 |
+
import json
|
5 |
+
from typing import Dict, Any
|
6 |
+
import numpy as np
|
7 |
+
from opencc import OpenCC
|
8 |
+
import jieba
|
9 |
+
import re
|
10 |
+
|
11 |
+
class EndpointHandler:
|
12 |
+
def __init__(self):
|
13 |
+
self.tokenizer = None
|
14 |
+
self.model = None
|
15 |
+
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
16 |
+
self.converter = OpenCC('s2t')
|
17 |
+
|
18 |
+
def initialize(self, context):
|
19 |
+
"""初始化模型和 tokenizer"""
|
20 |
+
self.tokenizer = AutoTokenizer.from_pretrained(
|
21 |
+
"THUDM/chatglm3-6b-base",
|
22 |
+
trust_remote_code=True
|
23 |
+
)
|
24 |
+
self.model = AutoModel.from_pretrained(
|
25 |
+
"THUDM/chatglm3-6b-base",
|
26 |
+
trust_remote_code=True,
|
27 |
+
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32
|
28 |
+
).to(self.device)
|
29 |
+
self.model.eval()
|
30 |
+
|
31 |
+
def preprocess(self, data: Dict[str, Any]) -> Dict[str, Any]:
|
32 |
+
"""預處理輸入數據"""
|
33 |
+
inputs = data.pop("inputs", data)
|
34 |
+
|
35 |
+
# 確保輸入格式正確
|
36 |
+
if not isinstance(inputs, dict):
|
37 |
+
inputs = {"message": inputs}
|
38 |
+
|
39 |
+
return inputs
|
40 |
+
|
41 |
+
def inference(self, inputs: Dict[str, Any]) -> Dict[str, Any]:
|
42 |
+
"""執行推理"""
|
43 |
+
message = inputs.get("message", "")
|
44 |
+
context = inputs.get("context", "")
|
45 |
+
|
46 |
+
# 構建提示詞
|
47 |
+
prompt = self._build_prompt(context, message)
|
48 |
+
|
49 |
+
# tokenize
|
50 |
+
inputs = self.tokenizer(
|
51 |
+
prompt,
|
52 |
+
return_tensors="pt",
|
53 |
+
add_special_tokens=True,
|
54 |
+
truncation=True,
|
55 |
+
max_length=2048
|
56 |
+
).to(self.device)
|
57 |
+
|
58 |
+
# 生成回應
|
59 |
+
with torch.no_grad():
|
60 |
+
outputs = self.model.generate(
|
61 |
+
**inputs,
|
62 |
+
max_new_tokens=256,
|
63 |
+
temperature=0.7,
|
64 |
+
top_p=0.9,
|
65 |
+
do_sample=True,
|
66 |
+
repetition_penalty=1.2,
|
67 |
+
num_beams=4,
|
68 |
+
early_stopping=True
|
69 |
+
)
|
70 |
+
|
71 |
+
response = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
72 |
+
response = response.split("芙莉蓮:")[-1].strip()
|
73 |
+
|
74 |
+
# 後處理回應
|
75 |
+
response = self._process_response(response)
|
76 |
+
|
77 |
+
return {"response": response}
|
78 |
+
|
79 |
+
def _build_prompt(self, context: str, query: str) -> str:
|
80 |
+
"""構建提示詞"""
|
81 |
+
return f"""你是芙莉蓮,需要遵守以下規則回答:
|
82 |
+
|
83 |
+
1. 身份設定:
|
84 |
+
- 千年精靈魔法師
|
85 |
+
- 態度溫柔但帶著些許嘲諷
|
86 |
+
- 說話優雅且有距離感
|
87 |
+
|
88 |
+
2. 重要關係:
|
89 |
+
- 弗蘭梅是我的師傅
|
90 |
+
- 費倫是我的學生
|
91 |
+
- 欣梅爾是我的摯友
|
92 |
+
- 海塔是我的故友
|
93 |
+
|
94 |
+
3. 回答規則:
|
95 |
+
- 使用繁體中文
|
96 |
+
- 必須提供具體詳細的內容
|
97 |
+
- 保持回答的連貫性和完整性
|
98 |
+
|
99 |
+
相關資訊:
|
100 |
+
{context}
|
101 |
+
|
102 |
+
用戶:{query}
|
103 |
+
芙莉蓮:"""
|
104 |
+
|
105 |
+
def _process_response(self, response: str) -> str:
|
106 |
+
"""處理回應文本"""
|
107 |
+
if not response or not response.strip():
|
108 |
+
return "抱歉,我現在有點恍神,請你再問一次好嗎?"
|
109 |
+
|
110 |
+
# 轉換為繁體
|
111 |
+
response = self.converter.convert(response)
|
112 |
+
|
113 |
+
# 清理和格式化
|
114 |
+
response = re.sub(r'\s+', '', response)
|
115 |
+
if not response.endswith(('。', '!', '?', '~', '呢', '啊', '吶')):
|
116 |
+
response += '呢。'
|
117 |
+
|
118 |
+
return response
|
119 |
+
|
120 |
+
def postprocess(self, data: Dict[str, Any]) -> Dict[str, Any]:
|
121 |
+
"""後處理輸出數據"""
|
122 |
+
return data
|