--- datasets: - homebrewltd/instruction-speech-whispervq-v2 language: - en license: apache-2.0 tags: - sound language model --- ## Caution This is an intermediate checkpoint. ## Model Details We have developed and released the family [llama3s](https://huggingface.co/collections/homebrew-research/llama3-s-669df2139f0576abc6eb7405). This family is natively understanding audio and text input. We continue to supervised finetune our last checkpoint using WhisperVQ as a tokenizer for audio files [homebrewltd/...](...) with 2B tokens from [Instruction Speech WhisperVQ v2](https://huggingface.co/datasets/homebrewltd/instruction-speech-whispervq-v2) dataset. **Model developers** Homebrew Research. **Input** Text and sound. **Output** Text. **Model Architecture** Llama-3. **Language(s):** English. ## Intended Use **Intended Use Cases** This family is primarily intended for research applications. This version aims to further improve the LLM on sound understanding capabilities. **Out-of-scope** The use of llama3-s in any manner that violates applicable laws or regulations is strictly prohibited. ## How to Get Started with the Model First, we need to convert the audio file to sound tokens ```python ``` Then, we can inference the model the same as any other LLM. ```python ``` ## Training process **Training Metrics Image**: Below is a snapshot of the training loss curve visualized. ![training_loss](https://cdn-uploads.huggingface.co/production/uploads/65713d70f56f9538679e5a56/Mo_FGQvhkcHl3y1REf76f.png) ### Hardware **GPU Configuration**: Cluster of 8x NVIDIA H100-SXM-80GB. **GPU Usage**: - **Continual Training**: 6 hours. ### Training Arguments We utilize [torchtune](https://github.com/pytorch/torchtune) library for the latest FSDP2 training code implementation. | Parameter | Continual Training | |----------------------------|-------------------------| | **Epoch** | 1 | | **Global batch size** | 128 | | **Learning Rate** | 0.5e-4 | | **Learning Scheduler** | Cosine with warmup | | **Optimizer** | Adam torch fused | | **Warmup Ratio** | 0.01 | | **Weight Decay** | 0.005 | | **Max Sequence Length** | 1024 | ## Citation Information **BibTeX:** ``` @article{Llama3-S: Sound Instruction Language Model 2024, title={Llama3-S}, author={Homebrew Research}, year=2024, month=August}, url={https://huggingface.co/homebrewltd/llama3.1-s-2024-08-15} ``` ## Acknowledgement - **[WhisperSpeech](https://github.com/collabora/WhisperSpeech)** - **[Meta-Llama-3.1-8B-Instruct ](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct)**