--- license: apache-2.0 base_model: bert-large-uncased tags: - generated_from_trainer metrics: - accuracy - precision - recall model-index: - name: phishing_2_1 results: [] --- # phishing_2_1 This model is a fine-tuned version of [bert-large-uncased](https://huggingface.co/bert-large-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3498 - Accuracy: 0.9634 - Precision: 0.9918 - Recall: 0.9345 - False Positive Rate: 0.0077 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 12 - eval_batch_size: 12 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | False Positive Rate | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:---------:|:------:|:-------------------:| | 0.365 | 1.0 | 3025 | 0.3632 | 0.9480 | 0.9861 | 0.9088 | 0.0128 | | 0.3453 | 2.0 | 6050 | 0.3405 | 0.9727 | 0.9752 | 0.9700 | 0.0247 | | 0.3623 | 3.0 | 9075 | 0.3596 | 0.9536 | 0.9861 | 0.9202 | 0.0130 | | 0.3498 | 4.0 | 12100 | 0.3498 | 0.9634 | 0.9918 | 0.9345 | 0.0077 | ### Framework versions - Transformers 4.39.3 - Pytorch 2.1.2 - Datasets 2.18.0 - Tokenizers 0.15.2