--- license: mit --- --- language: en license: apache-2.0 --- # My BERT Model This is a BERT model fine-tuned for extracting embeddings from CVs and startup descriptions for matching purposes. ## Model Details - **Architecture:** BERT-base-uncased - **Use case:** CV and Startup matching - **Training data:** Not applicable (pre-trained model used) ## How to use ```python from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained("your_username/your_model_name") model = BertModel.from_pretrained("your_username/your_model_name") text = "Sample text" inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True) outputs = model(**inputs) embedding = outputs.last_hidden_state.mean(dim=1).detach().numpy()