--- license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: emotion_classification results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.53125 --- # emotion_classification This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.8129 - Accuracy: 0.5312 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine_with_restarts - lr_scheduler_warmup_steps: 30 - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 40 | 1.4349 | 0.45 | | No log | 2.0 | 80 | 1.4560 | 0.5 | | No log | 3.0 | 120 | 1.5158 | 0.4813 | | No log | 4.0 | 160 | 1.4489 | 0.5125 | | No log | 5.0 | 200 | 1.8968 | 0.425 | | No log | 6.0 | 240 | 1.6870 | 0.5062 | | No log | 7.0 | 280 | 1.6759 | 0.4813 | | No log | 8.0 | 320 | 1.6498 | 0.5312 | | No log | 9.0 | 360 | 1.7581 | 0.5 | | No log | 10.0 | 400 | 1.7798 | 0.5 | | No log | 11.0 | 440 | 1.6983 | 0.525 | | No log | 12.0 | 480 | 1.7756 | 0.5375 | | 0.1761 | 13.0 | 520 | 1.7346 | 0.5125 | | 0.1761 | 14.0 | 560 | 1.8079 | 0.525 | | 0.1761 | 15.0 | 600 | 1.7950 | 0.5188 | ### Framework versions - Transformers 4.41.1 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1