--- library_name: transformers license: mit base_model: dbmdz/bert-base-turkish-cased tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: 5e-05_32_5_detect results: [] --- # 5e-05_32_5_detect This model is a fine-tuned version of [dbmdz/bert-base-turkish-cased](https://huggingface.co/dbmdz/bert-base-turkish-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3045 - Precision: 0.5046 - Recall: 0.3838 - F1: 0.4360 - Accuracy: 0.8908 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 76 | 0.1080 | 0.5529 | 0.5629 | 0.5579 | 0.9701 | | 0.2181 | 2.0 | 152 | 0.1084 | 0.3954 | 0.6228 | 0.4837 | 0.9626 | | 0.0781 | 3.0 | 228 | 0.1120 | 0.5497 | 0.4970 | 0.5220 | 0.9687 | | 0.0336 | 4.0 | 304 | 0.1083 | 0.4328 | 0.6168 | 0.5086 | 0.9647 | ### Framework versions - Transformers 4.48.2 - Pytorch 2.6.0+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0