--- license: apache-2.0 base_model: microsoft/beit-base-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: smids_5x_beit_base_adamax_001_fold5 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.7616666666666667 --- # smids_5x_beit_base_adamax_001_fold5 This model is a fine-tuned version of [microsoft/beit-base-patch16-224](https://huggingface.co/microsoft/beit-base-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.6041 - Accuracy: 0.7617 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.8603 | 1.0 | 375 | 0.8648 | 0.5183 | | 0.8445 | 2.0 | 750 | 0.8098 | 0.5417 | | 0.7944 | 3.0 | 1125 | 0.7826 | 0.5917 | | 0.7602 | 4.0 | 1500 | 0.8095 | 0.6133 | | 0.7358 | 5.0 | 1875 | 0.7702 | 0.62 | | 0.7338 | 6.0 | 2250 | 0.7325 | 0.6383 | | 0.7068 | 7.0 | 2625 | 0.7570 | 0.6267 | | 0.7788 | 8.0 | 3000 | 0.7318 | 0.6183 | | 0.7701 | 9.0 | 3375 | 0.7391 | 0.65 | | 0.7025 | 10.0 | 3750 | 0.7251 | 0.6617 | | 0.7076 | 11.0 | 4125 | 0.7171 | 0.6433 | | 0.6226 | 12.0 | 4500 | 0.7139 | 0.6333 | | 0.6825 | 13.0 | 4875 | 0.7299 | 0.63 | | 0.6882 | 14.0 | 5250 | 0.7324 | 0.6517 | | 0.7468 | 15.0 | 5625 | 0.6842 | 0.7 | | 0.6568 | 16.0 | 6000 | 0.7213 | 0.6533 | | 0.6593 | 17.0 | 6375 | 0.6880 | 0.6583 | | 0.68 | 18.0 | 6750 | 0.6884 | 0.6733 | | 0.6767 | 19.0 | 7125 | 0.7231 | 0.665 | | 0.6609 | 20.0 | 7500 | 0.6577 | 0.6983 | | 0.6233 | 21.0 | 7875 | 0.7352 | 0.6417 | | 0.6128 | 22.0 | 8250 | 0.6662 | 0.695 | | 0.6939 | 23.0 | 8625 | 0.7254 | 0.71 | | 0.6892 | 24.0 | 9000 | 0.7067 | 0.695 | | 0.5723 | 25.0 | 9375 | 0.6348 | 0.72 | | 0.6474 | 26.0 | 9750 | 0.6506 | 0.7083 | | 0.6695 | 27.0 | 10125 | 0.6672 | 0.6883 | | 0.7033 | 28.0 | 10500 | 0.6914 | 0.6833 | | 0.6792 | 29.0 | 10875 | 0.6764 | 0.685 | | 0.5904 | 30.0 | 11250 | 0.6857 | 0.6883 | | 0.5913 | 31.0 | 11625 | 0.6709 | 0.6933 | | 0.5784 | 32.0 | 12000 | 0.7184 | 0.69 | | 0.6212 | 33.0 | 12375 | 0.6393 | 0.7233 | | 0.6674 | 34.0 | 12750 | 0.6697 | 0.71 | | 0.5844 | 35.0 | 13125 | 0.6220 | 0.7283 | | 0.5892 | 36.0 | 13500 | 0.6265 | 0.7217 | | 0.572 | 37.0 | 13875 | 0.6315 | 0.7117 | | 0.5345 | 38.0 | 14250 | 0.6267 | 0.7417 | | 0.5582 | 39.0 | 14625 | 0.5952 | 0.7433 | | 0.5947 | 40.0 | 15000 | 0.6182 | 0.715 | | 0.5681 | 41.0 | 15375 | 0.6009 | 0.7533 | | 0.5885 | 42.0 | 15750 | 0.6107 | 0.7367 | | 0.5772 | 43.0 | 16125 | 0.5746 | 0.75 | | 0.4378 | 44.0 | 16500 | 0.5833 | 0.755 | | 0.5286 | 45.0 | 16875 | 0.6256 | 0.7417 | | 0.538 | 46.0 | 17250 | 0.6036 | 0.7483 | | 0.5732 | 47.0 | 17625 | 0.6044 | 0.76 | | 0.4485 | 48.0 | 18000 | 0.5966 | 0.7533 | | 0.4959 | 49.0 | 18375 | 0.6043 | 0.7583 | | 0.4683 | 50.0 | 18750 | 0.6041 | 0.7617 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.1.0+cu121 - Datasets 2.12.0 - Tokenizers 0.13.2