--- license: apache-2.0 base_model: facebook/deit-base-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: smids_3x_deit_base_sgd_00001_fold3 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.4266666666666667 --- # smids_3x_deit_base_sgd_00001_fold3 This model is a fine-tuned version of [facebook/deit-base-patch16-224](https://huggingface.co/facebook/deit-base-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.0784 - Accuracy: 0.4267 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 1.1104 | 1.0 | 225 | 1.1064 | 0.345 | | 1.1269 | 2.0 | 450 | 1.1051 | 0.355 | | 1.1082 | 3.0 | 675 | 1.1039 | 0.3667 | | 1.0954 | 4.0 | 900 | 1.1026 | 0.365 | | 1.1069 | 5.0 | 1125 | 1.1015 | 0.36 | | 1.1012 | 6.0 | 1350 | 1.1003 | 0.3667 | | 1.1071 | 7.0 | 1575 | 1.0992 | 0.3733 | | 1.1242 | 8.0 | 1800 | 1.0982 | 0.3767 | | 1.086 | 9.0 | 2025 | 1.0971 | 0.3783 | | 1.0866 | 10.0 | 2250 | 1.0961 | 0.3867 | | 1.0948 | 11.0 | 2475 | 1.0952 | 0.3833 | | 1.0863 | 12.0 | 2700 | 1.0942 | 0.385 | | 1.0844 | 13.0 | 2925 | 1.0933 | 0.3833 | | 1.0933 | 14.0 | 3150 | 1.0925 | 0.3867 | | 1.0947 | 15.0 | 3375 | 1.0916 | 0.3917 | | 1.084 | 16.0 | 3600 | 1.0908 | 0.39 | | 1.0986 | 17.0 | 3825 | 1.0900 | 0.395 | | 1.0824 | 18.0 | 4050 | 1.0893 | 0.3967 | | 1.0832 | 19.0 | 4275 | 1.0886 | 0.395 | | 1.0894 | 20.0 | 4500 | 1.0879 | 0.3967 | | 1.0841 | 21.0 | 4725 | 1.0872 | 0.4 | | 1.0872 | 22.0 | 4950 | 1.0865 | 0.405 | | 1.0916 | 23.0 | 5175 | 1.0859 | 0.4117 | | 1.0847 | 24.0 | 5400 | 1.0853 | 0.4117 | | 1.0901 | 25.0 | 5625 | 1.0848 | 0.41 | | 1.0732 | 26.0 | 5850 | 1.0842 | 0.41 | | 1.0848 | 27.0 | 6075 | 1.0837 | 0.4133 | | 1.0818 | 28.0 | 6300 | 1.0832 | 0.415 | | 1.0774 | 29.0 | 6525 | 1.0828 | 0.415 | | 1.0812 | 30.0 | 6750 | 1.0823 | 0.4183 | | 1.0886 | 31.0 | 6975 | 1.0819 | 0.4183 | | 1.0712 | 32.0 | 7200 | 1.0815 | 0.42 | | 1.0744 | 33.0 | 7425 | 1.0812 | 0.42 | | 1.0756 | 34.0 | 7650 | 1.0808 | 0.425 | | 1.0664 | 35.0 | 7875 | 1.0805 | 0.4267 | | 1.0977 | 36.0 | 8100 | 1.0802 | 0.4283 | | 1.0683 | 37.0 | 8325 | 1.0799 | 0.4283 | | 1.0735 | 38.0 | 8550 | 1.0797 | 0.4267 | | 1.0832 | 39.0 | 8775 | 1.0795 | 0.4267 | | 1.0815 | 40.0 | 9000 | 1.0793 | 0.4267 | | 1.0823 | 41.0 | 9225 | 1.0791 | 0.425 | | 1.0956 | 42.0 | 9450 | 1.0789 | 0.425 | | 1.0851 | 43.0 | 9675 | 1.0788 | 0.425 | | 1.0774 | 44.0 | 9900 | 1.0787 | 0.4267 | | 1.0466 | 45.0 | 10125 | 1.0786 | 0.4267 | | 1.0871 | 46.0 | 10350 | 1.0785 | 0.4267 | | 1.0722 | 47.0 | 10575 | 1.0784 | 0.4267 | | 1.069 | 48.0 | 10800 | 1.0784 | 0.4267 | | 1.0654 | 49.0 | 11025 | 1.0784 | 0.4267 | | 1.0659 | 50.0 | 11250 | 1.0784 | 0.4267 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.1.0+cu121 - Datasets 2.12.0 - Tokenizers 0.13.2