--- license: apache-2.0 base_model: facebook/deit-tiny-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: smids_1x_deit_tiny_rms_001_fold4 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.7333333333333333 --- # smids_1x_deit_tiny_rms_001_fold4 This model is a fine-tuned version of [facebook/deit-tiny-patch16-224](https://huggingface.co/facebook/deit-tiny-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.9960 - Accuracy: 0.7333 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.1598 | 1.0 | 75 | 4.0739 | 0.3033 | | 1.1025 | 2.0 | 150 | 1.1472 | 0.335 | | 1.0056 | 3.0 | 225 | 0.8843 | 0.5617 | | 0.9034 | 4.0 | 300 | 0.8985 | 0.5117 | | 0.8764 | 5.0 | 375 | 0.9613 | 0.5017 | | 0.9617 | 6.0 | 450 | 0.9074 | 0.5317 | | 0.8578 | 7.0 | 525 | 0.8240 | 0.5717 | | 0.8424 | 8.0 | 600 | 0.8437 | 0.5617 | | 0.8025 | 9.0 | 675 | 0.7942 | 0.5833 | | 0.7777 | 10.0 | 750 | 0.7683 | 0.57 | | 0.8053 | 11.0 | 825 | 0.7474 | 0.5983 | | 0.818 | 12.0 | 900 | 0.7555 | 0.61 | | 0.8018 | 13.0 | 975 | 0.7629 | 0.5833 | | 0.8411 | 14.0 | 1050 | 0.7216 | 0.635 | | 0.6416 | 15.0 | 1125 | 0.8742 | 0.56 | | 0.8084 | 16.0 | 1200 | 0.7814 | 0.6083 | | 0.7505 | 17.0 | 1275 | 0.7600 | 0.6183 | | 0.6996 | 18.0 | 1350 | 0.7346 | 0.6283 | | 0.7648 | 19.0 | 1425 | 0.7240 | 0.6617 | | 0.6916 | 20.0 | 1500 | 0.6768 | 0.6767 | | 0.7556 | 21.0 | 1575 | 0.7263 | 0.6617 | | 0.6471 | 22.0 | 1650 | 0.7297 | 0.6583 | | 0.752 | 23.0 | 1725 | 0.7501 | 0.635 | | 0.7349 | 24.0 | 1800 | 0.6751 | 0.6883 | | 0.6802 | 25.0 | 1875 | 0.6689 | 0.6817 | | 0.6239 | 26.0 | 1950 | 0.8871 | 0.5817 | | 0.6865 | 27.0 | 2025 | 0.6485 | 0.7033 | | 0.6138 | 28.0 | 2100 | 0.6457 | 0.7233 | | 0.6707 | 29.0 | 2175 | 0.6937 | 0.6833 | | 0.6824 | 30.0 | 2250 | 0.6688 | 0.7033 | | 0.5913 | 31.0 | 2325 | 0.6725 | 0.715 | | 0.5797 | 32.0 | 2400 | 0.6508 | 0.7167 | | 0.5524 | 33.0 | 2475 | 0.7048 | 0.7 | | 0.4736 | 34.0 | 2550 | 0.6807 | 0.6933 | | 0.5263 | 35.0 | 2625 | 0.6317 | 0.7233 | | 0.5348 | 36.0 | 2700 | 0.6398 | 0.7367 | | 0.5082 | 37.0 | 2775 | 0.6440 | 0.7183 | | 0.4972 | 38.0 | 2850 | 0.6697 | 0.7167 | | 0.4567 | 39.0 | 2925 | 0.6947 | 0.73 | | 0.4313 | 40.0 | 3000 | 0.6527 | 0.7383 | | 0.4762 | 41.0 | 3075 | 0.6875 | 0.74 | | 0.4293 | 42.0 | 3150 | 0.7259 | 0.7333 | | 0.4594 | 43.0 | 3225 | 0.7531 | 0.7367 | | 0.379 | 44.0 | 3300 | 0.7792 | 0.7383 | | 0.3265 | 45.0 | 3375 | 0.7882 | 0.74 | | 0.2807 | 46.0 | 3450 | 0.8615 | 0.7367 | | 0.2733 | 47.0 | 3525 | 0.9438 | 0.73 | | 0.2273 | 48.0 | 3600 | 0.9312 | 0.73 | | 0.2189 | 49.0 | 3675 | 0.9889 | 0.7383 | | 0.1609 | 50.0 | 3750 | 0.9960 | 0.7333 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu118 - Datasets 2.15.0 - Tokenizers 0.15.0