hkivancoral's picture
End of training
7c9766a
metadata
license: apache-2.0
base_model: facebook/deit-tiny-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: smids_1x_deit_tiny_rms_0001_fold3
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8816666666666667

smids_1x_deit_tiny_rms_0001_fold3

This model is a fine-tuned version of facebook/deit-tiny-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0984
  • Accuracy: 0.8817

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.7593 1.0 75 0.5650 0.795
0.4619 2.0 150 0.5773 0.74
0.3635 3.0 225 0.4403 0.85
0.3309 4.0 300 0.3368 0.865
0.2141 5.0 375 0.4183 0.86
0.1728 6.0 450 0.5130 0.8617
0.154 7.0 525 0.4040 0.8683
0.1331 8.0 600 0.5264 0.855
0.0922 9.0 675 0.7609 0.8467
0.0818 10.0 750 0.6611 0.8733
0.1085 11.0 825 0.6834 0.8783
0.0246 12.0 900 0.6979 0.8783
0.0878 13.0 975 0.9032 0.8433
0.1089 14.0 1050 0.7716 0.86
0.0143 15.0 1125 0.8328 0.8633
0.0139 16.0 1200 0.8299 0.86
0.0102 17.0 1275 0.9296 0.865
0.1127 18.0 1350 0.8373 0.8517
0.0195 19.0 1425 0.9545 0.87
0.0133 20.0 1500 1.0697 0.8617
0.0108 21.0 1575 1.2111 0.8333
0.0129 22.0 1650 1.0019 0.8667
0.0225 23.0 1725 1.0409 0.8567
0.0251 24.0 1800 1.1816 0.8467
0.0012 25.0 1875 1.1276 0.8633
0.003 26.0 1950 1.2613 0.8517
0.0173 27.0 2025 1.2463 0.8667
0.0413 28.0 2100 1.0810 0.8667
0.0002 29.0 2175 1.0875 0.8683
0.0257 30.0 2250 1.0511 0.86
0.0 31.0 2325 0.9064 0.895
0.0 32.0 2400 0.9226 0.8933
0.0 33.0 2475 0.9451 0.8933
0.0062 34.0 2550 0.9369 0.8917
0.0083 35.0 2625 0.9494 0.885
0.0047 36.0 2700 0.9547 0.885
0.0019 37.0 2775 0.9760 0.885
0.0 38.0 2850 1.0147 0.8883
0.0 39.0 2925 0.9604 0.885
0.0 40.0 3000 0.9768 0.8883
0.0 41.0 3075 0.9916 0.8817
0.003 42.0 3150 1.0329 0.8867
0.0028 43.0 3225 1.1065 0.8733
0.0 44.0 3300 1.0908 0.8817
0.0025 45.0 3375 1.0917 0.8817
0.0025 46.0 3450 1.0917 0.8817
0.0051 47.0 3525 1.0933 0.8817
0.0 48.0 3600 1.0955 0.8817
0.0 49.0 3675 1.0973 0.8817
0.0044 50.0 3750 1.0984 0.8817

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0