hkivancoral's picture
End of training
5f3b353
metadata
license: apache-2.0
base_model: facebook/deit-base-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: hushem_5x_deit_base_rms_001_fold1
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.4888888888888889

hushem_5x_deit_base_rms_001_fold1

This model is a fine-tuned version of facebook/deit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.9203
  • Accuracy: 0.4889

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
2.2898 1.0 27 1.4240 0.2444
1.4014 2.0 54 1.3895 0.1778
1.3975 3.0 81 1.3921 0.2444
1.3985 4.0 108 1.4006 0.2444
1.4125 5.0 135 1.3918 0.2667
1.3889 6.0 162 1.3878 0.2444
1.3949 7.0 189 1.3872 0.2667
1.4192 8.0 216 1.3990 0.2444
1.3939 9.0 243 1.3853 0.2889
1.3926 10.0 270 1.3626 0.4
1.356 11.0 297 1.2435 0.3778
1.2007 12.0 324 1.1323 0.3778
1.1878 13.0 351 1.2381 0.4
1.1084 14.0 378 1.4461 0.4222
1.0442 15.0 405 1.1938 0.4667
0.9336 16.0 432 1.2799 0.4
1.0799 17.0 459 1.1047 0.5333
0.9885 18.0 486 1.2688 0.4444
0.9753 19.0 513 1.2979 0.4444
0.9374 20.0 540 1.4547 0.4
0.8511 21.0 567 1.1517 0.4222
0.9007 22.0 594 1.4045 0.4444
0.8776 23.0 621 1.3447 0.4222
0.8333 24.0 648 1.2229 0.4889
0.8558 25.0 675 1.4746 0.4
0.8456 26.0 702 1.4066 0.4
0.8034 27.0 729 1.6488 0.3333
0.7686 28.0 756 1.4747 0.3778
0.7992 29.0 783 1.6794 0.4222
0.7462 30.0 810 1.9130 0.4
0.6946 31.0 837 1.5285 0.4
0.7435 32.0 864 1.6866 0.3556
0.6803 33.0 891 1.9290 0.3778
0.6227 34.0 918 1.4309 0.4222
0.6076 35.0 945 1.6567 0.4667
0.585 36.0 972 1.7272 0.3778
0.5538 37.0 999 1.6179 0.4
0.5528 38.0 1026 1.7890 0.3778
0.496 39.0 1053 1.6989 0.3556
0.4841 40.0 1080 1.8596 0.4
0.4712 41.0 1107 1.7704 0.4222
0.4626 42.0 1134 1.8917 0.4222
0.5151 43.0 1161 1.8143 0.4444
0.3695 44.0 1188 2.1532 0.3778
0.3767 45.0 1215 2.1009 0.4222
0.3138 46.0 1242 1.9441 0.4667
0.3279 47.0 1269 2.0701 0.4889
0.2542 48.0 1296 1.9192 0.4889
0.2778 49.0 1323 1.9203 0.4889
0.2872 50.0 1350 1.9203 0.4889

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0