hkivancoral's picture
End of training
b0f7c74
metadata
license: apache-2.0
base_model: facebook/deit-base-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: hushem_40x_deit_base_sgd_0001_fold3
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.46511627906976744

hushem_40x_deit_base_sgd_0001_fold3

This model is a fine-tuned version of facebook/deit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2710
  • Accuracy: 0.4651

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.3787 1.0 217 1.4567 0.2326
1.3411 2.0 434 1.4476 0.2326
1.3346 3.0 651 1.4398 0.2326
1.3522 4.0 868 1.4325 0.2558
1.295 5.0 1085 1.4257 0.2558
1.3027 6.0 1302 1.4192 0.2791
1.2908 7.0 1519 1.4129 0.3023
1.2684 8.0 1736 1.4068 0.3023
1.2597 9.0 1953 1.4007 0.3023
1.2504 10.0 2170 1.3948 0.3023
1.2181 11.0 2387 1.3891 0.3023
1.2286 12.0 2604 1.3834 0.3023
1.229 13.0 2821 1.3779 0.3023
1.2118 14.0 3038 1.3725 0.3256
1.1939 15.0 3255 1.3673 0.3256
1.2054 16.0 3472 1.3622 0.3488
1.1836 17.0 3689 1.3572 0.3721
1.1754 18.0 3906 1.3524 0.3721
1.1872 19.0 4123 1.3477 0.3721
1.1652 20.0 4340 1.3431 0.3721
1.1396 21.0 4557 1.3387 0.3721
1.1373 22.0 4774 1.3343 0.3953
1.1381 23.0 4991 1.3300 0.3953
1.101 24.0 5208 1.3259 0.3953
1.1305 25.0 5425 1.3219 0.4186
1.1458 26.0 5642 1.3181 0.4186
1.0969 27.0 5859 1.3143 0.4186
1.092 28.0 6076 1.3106 0.4186
1.0422 29.0 6293 1.3071 0.4186
1.07 30.0 6510 1.3037 0.4419
1.097 31.0 6727 1.3005 0.4419
1.1048 32.0 6944 1.2974 0.4419
1.0657 33.0 7161 1.2945 0.4419
1.0841 34.0 7378 1.2918 0.4419
1.0697 35.0 7595 1.2891 0.4419
1.0586 36.0 7812 1.2867 0.4419
1.0346 37.0 8029 1.2845 0.4419
1.0364 38.0 8246 1.2824 0.4651
1.055 39.0 8463 1.2804 0.4651
1.0391 40.0 8680 1.2787 0.4651
1.0408 41.0 8897 1.2771 0.4651
1.0911 42.0 9114 1.2757 0.4651
1.042 43.0 9331 1.2745 0.4651
1.0562 44.0 9548 1.2735 0.4651
1.0444 45.0 9765 1.2727 0.4651
1.0551 46.0 9982 1.2720 0.4651
1.0314 47.0 10199 1.2715 0.4651
1.067 48.0 10416 1.2712 0.4651
1.0573 49.0 10633 1.2710 0.4651
1.0022 50.0 10850 1.2710 0.4651

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.1.0+cu121
  • Datasets 2.12.0
  • Tokenizers 0.13.2