--- library_name: hivex original_train_name: AerialWildfireSuppression_difficulty_9_task_4_run_id_0_train tags: - hivex - hivex-aerial-wildfire-suppression - reinforcement-learning - multi-agent-reinforcement-learning model-index: - name: hivex-AWS-PPO-baseline-task-4-difficulty-9 results: - task: type: sub-task name: protect_village task-id: 4 difficulty-id: 9 dataset: name: hivex-aerial-wildfire-suppression type: hivex-aerial-wildfire-suppression metrics: - type: crash_count value: 0.996428570151329 +/- 0.015971919837000092 name: Crash Count verified: true - type: extinguishing_trees value: 0.04055555630475283 +/- 0.1275818509161524 name: Extinguishing Trees verified: true - type: extinguishing_trees_reward value: 0.20277777537703515 +/- 0.6379092306314261 name: Extinguishing Trees Reward verified: true - type: fire_too_close_to_city value: 0.004545454680919647 +/- 0.020327891310361893 name: Fire too Close to City verified: true - type: preparing_trees value: 276.61525497436526 +/- 33.81716366148196 name: Preparing Trees verified: true - type: preparing_trees_reward value: 276.61525497436526 +/- 33.81716366148196 name: Preparing Trees Reward verified: true - type: water_drop value: 2.0456768214702605 +/- 0.4084652912050666 name: Water Drop verified: true - type: water_pickup value: 2.0456768214702605 +/- 0.4084652912050666 name: Water Pickup verified: true - type: cumulative_reward value: 177.27129974365235 +/- 36.12212164713132 name: Cumulative Reward verified: true --- This model serves as the baseline for the **Aerial Wildfire Suppression** environment, trained and tested on task 4 with difficulty 9 using the Proximal Policy Optimization (PPO) algorithm.

Environment: **Aerial Wildfire Suppression**
Task: 4
Difficulty: 9
Algorithm: PPO
Episode Length: 3000
Training max_steps: 1800000
Testing max_steps: 180000

Train & Test [Scripts](https://github.com/hivex-research/hivex)
Download the [Environment](https://github.com/hivex-research/hivex-environments)