--- library_name: transformers tags: - code datasets: - elyza/ELYZA-tasks-100 language: - ja metrics: - accuracy base_model: - tohoku-nlp/bert-base-japanese-v3 pipeline_tag: text-classification --- # Model Card for Model ID ## Model Details ### Model Description This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [Hiroki Yanagisawa] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [BERT] - **Language(s) (NLP):** [Japanese] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [cl-tohoku/bert-base-japanese-v3] ### Model Sources [optional] - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses ### Direct Use from transformers import pipeline このlabel2idで学習しました。label2idはこれを利用してください。 label2id = {'Task_Solution': 0, 'Creative_Generation': 1, 'Knowledge_Explanation': 2, 'Analytical_Reasoning': 3, 'Information_Extraction': 4, 'Step_by_Step_Calculation': 5, 'Role_Play_Response': 6, 'Opinion_Perspective': 7} def preprocess_text_classification(examples: dict[str, list]) -> BatchEncoding: """バッチ処理用に修正""" encoded_examples = tokenizer( examples["questions"], # バッチ処理なのでリストで渡される max_length=512, padding=True, truncation=True, return_tensors=None # バッチ処理時はNoneを指定 ) # ラベルをバッチで数値に変換 encoded_examples["labels"] = [label2id[label] for label in examples["labels"]] return encoded_examples ##使用するデータセット test_data = test_data.to_pandas() test_data["labels"] = test_data["labels"].apply(lambda x: label2id[x]) test_data model_name = "hiroki-rad/bert-base-classification-ft" classify_pipe = pipeline(model=model_name, device="cuda:0") class_label = dataset["labels"].unique() label2id = {label: id for id, label in enumerate(class_label)} id2label = {id: label for id, label in enumerate(class_label)} results: list[dict[str, float | str]] = [] for i, example in tqdm(enumerate(test_data.itertuples())): # モデルの予測結果を取得 model_prediction = classify_pipe(example.questions)[0] # 正解のラベルIDをラベル名に変換 true_label = id2label[example.labels] results.append( { "example_id": i, "pred_prob": model_prediction["score"], "pred_label": model_prediction["label"], "true_label": true_label, } ) ### Downstream Use [optional] [More Information Needed] ### Out-of-Scope Use [More Information Needed] ## Bias, Risks, and Limitations [More Information Needed] ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data [More Information Needed] ### Training Procedure #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] #### Speeds, Sizes, Times [optional] [More Information Needed] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data [More Information Needed] #### Factors [More Information Needed] #### Metrics [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] [More Information Needed] ## Environmental Impact Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]