{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x797283073680>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1696302957731908349, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM05pDzDtXa6gzaYuZCmvLWGyQU7Ml6wOAAAgD8AAIA/5m8TvbhW1Lk6Xo65bvWxtLa34DpQH6o4AACAPwAAgD9mvt679vRNusQQD7wMlmM241ANOtNu1rUAAIA/AACAPxMJXT48BpM+Gr00voHhSb5pTaW8OS+evAAAAAAAAAAAGt5svSmIc7ptuC84Ky0lMykln7rTwk23AACAPwAAgD8zvCC+z69NvGIIJ7wrbaK6JMGyPYvShDsAAIA/AACAPzM22DzgYsI/VYDbPQ8ogb1xjYk91SLMPQAAAAAAAAAAmqdPPVwTULp4HC24N0kcs9bP27piMUw3AACAPwAAgD/mTYs9FIy3uuKperoGHmW1ZeLwucX3jjkAAIA/AACAP7O4O73DERW6brNUuqasHjbM3ck60gN1OQAAgD8AAIA/5t9yvY9KL7oXIgq6/5MUNuybETsMgR85AACAPwAAgD+mG4e90m3zPF4XHD7+3BO+UlSJPZYHibsAAAAAAAAAAGYmyzrsOfK5SnRRO5U8AbYKVmE7SP11ugAAgD8AAIA/EwYGvnH+DruuqOg7Z3WBOUZLNjzQAmS6AACAPwAAgD+tlBK+j/AQvP+RxLyQ5Y48v+9zPUuIbb0AAIA/AACAP7MW2D24Jpi5MtolOgCclLI3Md67rZ5CuQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVQwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGTtYywfQruMAWyUTegDjAF0lEdAlCd4kiUxEnV9lChoBkdAYzSuMdcSoWgHTegDaAhHQJQrta7mMfl1fZQoaAZHQGUu/hMrVe9oB03oA2gIR0CUP87pV0cPdX2UKGgGR0BgsAGGEf1ZaAdN6ANoCEdAlEog8GLUC3V9lChoBkdAY+xI1+AmRmgHTegDaAhHQJROhcX3xnZ1fZQoaAZHQF+ZjgydnTRoB03oA2gIR0CUVcso2GZedX2UKGgGR0Bl/JkiD/VBaAdN6ANoCEdAlFcsrd30PHV9lChoBkdAYqF5jYqXnmgHTegDaAhHQJRfYBnzxw11fZQoaAZHQF9j+mWMS9NoB03oA2gIR0CUYoO+7Dl6dX2UKGgGR0Bdxz7ALy+YaAdN6ANoCEdAlGYDjaPCEnV9lChoBkdAYpaVeKKpDWgHTegDaAhHQJRpGw9q1w51fZQoaAZHQGIw6Yu01IloB03oA2gIR0CUaTyULUkOdX2UKGgGR0BeS4FzMibEaAdN6ANoCEdAlGoY065oXnV9lChoBkdAYUAaR6nivWgHTegDaAhHQJRq8Md92HN1fZQoaAZHQGCOqJ/G2kVoB03oA2gIR0CUdmtl7MPjdX2UKGgGR0BnY7JwKjSHaAdN6ANoCEdAlIDKYiPhh3V9lChoBkdAZeKYKpkwvmgHTegDaAhHQJSGlbt7a7F1fZQoaAZHQGApVNg0CRxoB03oA2gIR0CUjG/PgNwzdX2UKGgGR0BijO9tdiUgaAdN6ANoCEdAlI2BZIQOF3V9lChoBkdAYKawgTyrgmgHTegDaAhHQJSr/HBDXvp1fZQoaAZHQGWvZAQg9vFoB03oA2gIR0CUry9h7VridX2UKGgGR0Bg8iwOe8PGaAdN6ANoCEdAlLUdGAkLQXV9lChoBkdAZkZbzshPkGgHTegDaAhHQJS2JVDKHO91fZQoaAZHQGBmkxh2GItoB03oA2gIR0CUvpwOvt+kdX2UKGgGR0BfFmkFfReDaAdN6ANoCEdAlMHbpaA4GXV9lChoBkdAZ1nqNZNfxGgHTegDaAhHQJTG7rdFfAt1fZQoaAZHQGZnWdVea8ZoB03oA2gIR0CUyz8stkFwdX2UKGgGR0BiQDNOdoWYaAdN6ANoCEdAlMtnRsuWbHV9lChoBkdAYQL1+y7f52gHTegDaAhHQJTMhme18b91fZQoaAZHQGLwoOQQtjFoB03oA2gIR0CUzatJnQIEdX2UKGgGR0BjQNsHjZL7aAdN6ANoCEdAlOABfrrxAnV9lChoBkdAY1yEsasIV2gHTegDaAhHQJTuXWCmMwV1fZQoaAZHQGcWdXT3IuJoB03oA2gIR0CU9MQ3gk1NdX2UKGgGR0Bl5Q1P3ztkaAdN6ANoCEdAlPlg3Lmp2nV9lChoBkdAX9O6jFhod2gHTegDaAhHQJT6Lp3X7Lt1fZQoaAZHQGTuQdCE6DJoB03oA2gIR0CVFbNEPUaydX2UKGgGR0Blbn3ai9IxaAdN6ANoCEdAlRpyuZCv5nV9lChoBkdAY6MEJ0GNaWgHTegDaAhHQJUiqZML4N91fZQoaAZHQGSZty5qdpZoB03oA2gIR0CVJEuPmxMWdX2UKGgGR0BgqQZqEeySaAdN6ANoCEdAlS+Azk6tDHV9lChoBkdAZFwomXw9aGgHTegDaAhHQJUyyY6XBxh1fZQoaAZHQGQei5/b0vpoB03oA2gIR0CVNnU+LWI5dX2UKGgGR0BmgctTUAktaAdN6ANoCEdAlTmE4FRpDnV9lChoBkdAZNTnkkrwv2gHTegDaAhHQJU5o9/z8P51fZQoaAZHQGRKUvXbudBoB03oA2gIR0CVOoM0xdpqdX2UKGgGR0BjhyOgg5imaAdN6ANoCEdAlTtdrsSkCXV9lChoBkdAYZuMAFPi1mgHTegDaAhHQJVGY3GXHBF1fZQoaAZHQGbwVGsmv4doB03oA2gIR0CVT1Xcxj8UdX2UKGgGR0BgHMp1A7gbaAdN6ANoCEdAlVOHyup0fnV9lChoBkdAZLGMRYigTWgHTegDaAhHQJVYfzRQaaV1fZQoaAZHQGTKaoddVvNoB03oA2gIR0CVWXqi48U3dX2UKGgGR0Bj5zDqGDcuaAdN6ANoCEdAlXn5IpYs/nV9lChoBkdAYdpJKaoddWgHTegDaAhHQJV8xaJQ+EB1fZQoaAZHv/wPrv9cbBJoB0veaAhHQJV/3SSeRPp1fZQoaAZHQGXIaVUuL75oB03oA2gIR0CVgclYlpoLdX2UKGgGR0Beji8jAzpHaAdN6ANoCEdAlYLAevIOpnV9lChoBkdAZuT/vOQhfWgHTegDaAhHQJWKG1ndweh1fZQoaAZHQGUYYYrJ8v5oB03oA2gIR0CVjPRjSXt0dX2UKGgGR0Bgnbb1yvLYaAdN6ANoCEdAlZARaC+UQnV9lChoBkdAZ/g23KB/Z2gHTegDaAhHQJWSyCGvfTF1fZQoaAZHQGce7WEsasJoB03oA2gIR0CVkvERradudX2UKGgGR0BgkWCuloDgaAdN6ANoCEdAlZPd7OVxCXV9lChoBkdAYfOa6STyKGgHTegDaAhHQJWUs89wFTx1fZQoaAZHQGeg3VLBbfRoB03oA2gIR0CVo29F4LThdX2UKGgGR0BijkZrHlwMaAdN6ANoCEdAla/rEP1+RnV9lChoBkdAZouvZAY51mgHTegDaAhHQJW0sakyk9F1fZQoaAZHQGXx1W8yvcJoB03oA2gIR0CVue4XGff5dX2UKGgGR0BgTunl4keIaAdN6ANoCEdAldUdcKPXCnV9lChoBkdAZSgiudPLxWgHTegDaAhHQJXYmgvlEJB1fZQoaAZHQGaaVuBMBZJoB03oA2gIR0CV3MuCf6GhdX2UKGgGR0BjF1PnB+F2aAdN6ANoCEdAld+JjpcHGHV9lChoBkdAZI3sabWmQGgHTegDaAhHQJXg9svZh8Z1fZQoaAZHQHCDp4SpR41oB018AmgIR0CV66dpZfUndX2UKGgGR0BiJlPBSDRMaAdN6ANoCEdAleu75uZTh3V9lChoBkdAZHHUNrj5sWgHTegDaAhHQJXv1/SYw7F1fZQoaAZHQF+iItDlYEJoB03oA2gIR0CV9Is4T9KmdX2UKGgGR0BjX9d7fHghaAdN6ANoCEdAlfeiJsO5KHV9lChoBkdAZK/zFMqSYGgHTegDaAhHQJX3wIHC4z91fZQoaAZHQF49u5SWJJpoB03oA2gIR0CV+JrE9+w1dX2UKGgGR0Bkso8r7O3VaAdN6ANoCEdAlflo4ACGOHV9lChoBkdAZ3DIJ7b+LmgHTegDaAhHQJYOtLPD50t1fZQoaAZHQGD1OKGcnVpoB03oA2gIR0CWE0qe9SMtdX2UKGgGR0BiFSvs7dSEaAdN6ANoCEdAlhh0LQXyiHV9lChoBkdAYHuFeOXE62gHTegDaAhHQJY5y1hLGrF1fZQoaAZHQGBUFDWsijdoB03oA2gIR0CWPRZrpJPJdX2UKGgGR0BhE3W+XZ5BaAdN6ANoCEdAlkCDwhGH6HV9lChoBkdAY4KABkqc3GgHTegDaAhHQJZCjmHP/rB1fZQoaAZHQGgRiExqO95oB03oA2gIR0CWQ5uanaWYdX2UKGgGR0BlXKN4qwyJaAdN6ANoCEdAlkuk4BFNL3V9lChoBkdAYDWPgeii7GgHTegDaAhHQJZLuPhhpg11fZQoaAZHQGFN97OVxCJoB03oA2gIR0CWTrW6bvw3dX2UKGgGR0BiN48fV7QcaAdN6ANoCEdAllIZeeFtbnV9lChoBkdAZZmEovzvqmgHTegDaAhHQJZU1jPOY6Z1fZQoaAZHQGDBVHvttyhoB03oA2gIR0CWVPrwvxpddX2UKGgGR0BfMmldkauPaAdN6ANoCEdAllXBrnDBM3V9lChoBkdAZFn5Y5ksjGgHTegDaAhHQJZWiHfuTid1fZQoaAZHQGC63N1QqI9oB03oA2gIR0CWcCNg0CRwdX2UKGgGR0Bl4HBeokzHaAdN6ANoCEdAlnbIZ62OQ3V9lChoBkdAYbeWIoE0SGgHTegDaAhHQJZ+WiJwbVB1fZQoaAZHQGR1F4TsY2toB03oA2gIR0CWier8BMi9dWUu"}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}