--- license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: ViT-Emotion-Classifier results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.575 --- # ViT-Emotion-Classifier This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.3652 - Accuracy: 0.575 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 40 | 1.8992 | 0.3312 | | No log | 2.0 | 80 | 1.5939 | 0.4062 | | No log | 3.0 | 120 | 1.4776 | 0.4688 | | No log | 4.0 | 160 | 1.4012 | 0.4813 | | No log | 5.0 | 200 | 1.3471 | 0.4875 | | No log | 6.0 | 240 | 1.2877 | 0.5375 | | No log | 7.0 | 280 | 1.2598 | 0.575 | | No log | 8.0 | 320 | 1.3595 | 0.4938 | | No log | 9.0 | 360 | 1.2825 | 0.5375 | | No log | 10.0 | 400 | 1.3291 | 0.5062 | | No log | 11.0 | 440 | 1.2422 | 0.5563 | | No log | 12.0 | 480 | 1.2659 | 0.575 | | 1.0646 | 13.0 | 520 | 1.3048 | 0.5062 | | 1.0646 | 14.0 | 560 | 1.2993 | 0.5563 | | 1.0646 | 15.0 | 600 | 1.2935 | 0.5563 | | 1.0646 | 16.0 | 640 | 1.3589 | 0.5437 | | 1.0646 | 17.0 | 680 | 1.2447 | 0.5938 | | 1.0646 | 18.0 | 720 | 1.3298 | 0.5563 | | 1.0646 | 19.0 | 760 | 1.2829 | 0.6 | | 1.0646 | 20.0 | 800 | 1.3092 | 0.5813 | | 1.0646 | 21.0 | 840 | 1.2895 | 0.5875 | | 1.0646 | 22.0 | 880 | 1.3810 | 0.5625 | | 1.0646 | 23.0 | 920 | 1.3833 | 0.5563 | | 1.0646 | 24.0 | 960 | 1.4841 | 0.5312 | | 0.3074 | 25.0 | 1000 | 1.3619 | 0.6062 | | 0.3074 | 26.0 | 1040 | 1.3776 | 0.5563 | | 0.3074 | 27.0 | 1080 | 1.3917 | 0.5875 | | 0.3074 | 28.0 | 1120 | 1.3585 | 0.575 | | 0.3074 | 29.0 | 1160 | 1.3455 | 0.5625 | | 0.3074 | 30.0 | 1200 | 1.4409 | 0.5813 | ### Framework versions - Transformers 4.41.1 - Pytorch 2.3.0+cu121 - Datasets 2.19.2 - Tokenizers 0.19.1