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ABSTRACT

pyannote.audio is an open-source toolkit written in Python for
speaker diarization. Version 2./ introduces a major overhaul of
pyannote.audio default speaker diarization pipeline, made of three
main stages: speaker segmentation applied to a short sliding window,
neural speaker embedding of each (local) speakers, and (global) ag-
glomerative clustering. One of the main objective of the toolkit is to
democratize speaker diarization. Therefore, on top of a pretrained
speaker diarization pipeline that gives good results out of the box,
we also provide a recipe that practitioners can follow to improve its
performance on their own (manually annotated) dataset.

Index Terms— speaker diarization, open source, toolkit

1. INTRODUCTION

pyannote.audio is an open-source toolkit written in Python for
speaker diarization.  Version 2./ introduces a major overhaul
of pyannote.audio default speaker diarization pipeline which is
very similar in spirit to the line of work developed by Kinoshita
at NTT [} 2] that “integrates clustering-based and end-to-end neu-
ral network-based diarization approaches into one framework”.
Hence, the proposed approach is composed of three main stages:
speaker segmentation applied to a (local) sliding window, neural
speaker embedding of each (local) speakers, and (global) agglom-
erative clustering. Section [2] goes into details about the proposed
approach but we highlight here the main differences with [1} 2].

First, local neural speaker diarization is applied to much shorter
overlapping windows (5s with a 500ms step) than the original one
(30s with 30s step, i.e. no overlap), making the whole task much
easier to solve:

* the upper bound on the number of speakers is smaller and the
training sequences are shorter, hence reducing the computa-
tional and memory cost of training such networks;

* the use of strongly overlapping windows can be seen as test
time augmentation, leading to better speaker segmentation
and denser (hence easier to cluster) speaker embeddings.

Second, one of the main advantage of the joint (diarization +
embedding) used in [1 2] lies in embeddings that are both overlap-
aware and computed from longer audio (hence more reliable).
Despite relying on two separate networks applied in cascade (first
segmentation, then embedding), we claim in Section [2.2] that our
speaker embeddings enjoy the same properties. Training speaker
embedding networks is notoriously data-hungry and it is not always
possible for practitioners to gather a training dataset that both con-
tains a large set of conversations as well as speaker labels which
are consistent across conversations. Therefore, we claim that using
two different networks makes the whole approach easier to adapt
to a particular dataset. On top of a pretrained speaker diarization

pipeline that gives good results out of the box, we also provide a set
of recipes that practitioners can choose from, depending on the size
of their (manually annotated) dataset.

2. PRINCIPLE

Figure [T] depicts the manual speaker diarization of a 30s conversa-
tion between two speakers that we will use throughout the paper for
illustration purposes.
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Fig. 1. Expected speaker diarization output of the sample conversa-
tion used throughout this paper.

2.1. Local neural speaker segmentation

The first step consists in applying the end-to-end neural speaker seg-
mentation model introduced in [3]] using a sliding window of 5s with
a step of 500ms. Figure [2]illustrates the output of this stage on the
30s sample whose manual annotation is depicted in Figure[T}
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Fig. 2. Local neural speaker segmentation. For each step of the 5s
window and each one of Kna.x = 3 speakers, the segmentation model
outputs the probability of the speaker being active every 16ms. We
use a step of 2s between windows for readability in this figure, but
the actual practical step is 500ms.

At this point, there is no guarantee that the same (local) speaker
is consistently assigned to the same (global) speaker index. Since
the speaker segmentation model has been trained in a permutation-
invariant manner and is limited to at most Kmax = 3 active speakers,
a particular speaker might be assigned two different indices in two
different windows w and w': this is actually what happens between
overlapping windows w12 = [12 — 17] and w14 = [14 — 19] in
Figure[2]

A binarization step is further applied using a threshold 6 €
[0, 1], which constitutes the first hyper-parameter of the proposed
speaker diarization pipeline. The effect of this binarization step on
the 30s audio sample is depicted in Figure[3]
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Fig. 3. Binary local speaker segmentation. For each step of the 5s
window w, only K, € {0, 1,2, 3} speakers whose probability goes
above 0 are kept.

2.2. Local speaker embedding

The second step consists in extracting K, speaker embeddings for
each window w: exactly one embedding per speaker who is active
within the window w. Therefore, the number of speaker embeddings
may vary depending on the window w. For instance, in the 30s audio
sample, window w; = [t — t + 5] may contain K,, = 0 speaker
like in wo, K, = 1 speaker like in w22, or K, = 2 speakers like in
w1i6.
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Fig. 4. Speaker embedding. Top row: 5s audio chunk. Middle row:
two speakers are active according to the neural speaker segmentation
model (the orange one and the blue one). Bottom row: the speaker
embedding of the blue speaker is computed using only the blue au-
dio signal, while the concatenation of orange audio signals is used to
compute the speaker embedding of the orange speaker. No embed-
ding is extracted for the green speaker as its probability never goes
above 60 segmentation threshold.

As depicted by they gray overlay in Figure[d] speakers may over-
lap partially within the considered window. To account for this pos-
sibility, the embedding of speaker k is computed from the concate-
nation of audio samples during which (1.) speaker k is active and
(2.) other speakers k' # k are inactive. This is similar in spirit to
what [4] calls overlap-aware speaker embeddings.

Compared to the standard approach that consists in extracting
exactly one speaker embedding using a short (typically 1 or 2 sec-
onds) periodic window [3], the proposed speaker embeddings are
expected to be more reliable for two main reasons:

e they are extracted from audio excerpts that only contain
speech samples from one single speaker while the standard
approach may extract speaker embeddings from a mixture of
speakers (and non-speech);

* they are extracted from potentially longer audio excerpts (up
to 5s in case a speaker speaks during the whole window w)
while the standard approach is limited to 1 or 2 seconds.

The main drawback of this approach is that it depends on the up-
stream speaker segmentation model whose errors could lead to de-
graded speaker embeddings.

2.3. Global agglomerative clustering

The third step consists in clustering the resulting set of speaker em-
bedding in order to assign each local speaker to a global cluster, as
depicted by colors in Figure[3]
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Fig. 5. Local speaker segme;rtation after global clustering.

Although spectral clustering [6] and variational Bayesian hid-
den Markov models [3] have been the prefered clustering techniques
in recent speaker diarization literature [[7]], the proposed pipeline re-
lies on a classical agglomerative hierarchical clustering with cen-
troid linkage (also known as the UPGMC algorithm) for two main
reasons:

* the latter only introduces a second hyper-parameter (the dis-
tance threshold § used as stopping criterion of the agglom-
erative clustering process) while both spectral clustering and
variational Bayesian hidden Markov models rely on at least a
couple of hyper-parameters;

» while variational Bayesian hidden Markov models (and, to
a lesser extent spectral clustering’)) expects that speaker em-
beddings are ordered chronologically with a strict periodicity
(e.g. one embedding every second), the speaker embedding
process introduced in sections 2.1] and 2.2] cannot guaran-
tee these properties because a variable number (zero, one, or
more) of speaker embeddings may be extracted every 500ms
(or whichever step is used by the 5s sliding window).

The choice of centroid linkage over variants (such as average,
single, complete, or Ward linkage) derives from the fact that the for-
mer consistently outperforms the latter on every single validation
sets later discussed in |§| (the runner-up being the more common av-
erage linkage).

2.4. Final aggregation
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Fig. 6. Final aggregation.

when combined with the critical step of Gaussian blur refinement of the
Laplacian matrix used for auto-tuning [6]



The fourth and final step aims at aggregating the clustered lo-
cal speaker segmentation into an actual speaker diarization output.
Depicted in Figure[6] it can be summarized as follows:

1. estimating the instantaneous (i.e. for each frame f) number
of speakers K, by summing the binary local speaker seg-
mentation obtained in Section[2.T|and Figure[3]and averaging
over overlapping windows;

2. estimating the instantaneous score of each cluster by sum-
ming the clustered local speaker segmentation obtained in
Section[2.3]and Figure [5]over overlapping windows;

3. selecting the Ky (given by step 1) clusters with highest in-
stantaneous score (step 2) and converting from discrete frame
indices to the temporal domain;

4. filling within-speaker gaps shorter than a (usually short) pre-
defined duration A.

The last step is optional as the value of A usually depends more on
the instructions given to the pool of human annotators than to the
data itself. For instance, DIHARD evaluation plan says that “small
pauses [shorter than] 200 ms by a speaker are not considered to
be segmentation breaks and should be bridged into a single contin-
uous segment” [8]]; VoxConverse guidelines say that “speech seg-
ments are split when pauses are greater than [250 ms]” [9]; the
Albayzin 2022 evaluation plan goes even further by requesting that
“consecutive segments of the same speaker with a silence of less that
2 seconds [...] are considered as a single segment” [10].

3. REPRODUCIBLE BENCHMARK

Despite the availability of several benchmarking initiatives (such as
DIHARD, VoxSRC, or Albayzin challenges, whose organizers are
heartily thanked by the author), it remains very difficult to gauge
the many speaker diarization approaches proposed by the research
community, for various reasons:

* A growing number of freely available datasets such as
AISHELL-4 (111, Albayzin/RTVE [10], AliMeeting [12],
AMI [13], VoxConverse 9], Ego4D [14], or This Ameri-
can Life [15]. Yet, some papers only report results on a
limited set of datasets either behind paywalls (such as CALL-
HOME [16], DIHARD |17|, or REPERE [18]]), on purely
synthetic datasets, or even private in-house datasets — effec-
tively preventing others (and newcomers in particular) from
comparing their approach to the so-called state-of-the-art.

* Two papers reporting results on the same dataset often use
different experimental protocols without even noticing. For
instance, they might use a slightly different test seﬂ different
versions of the gold standard[}| different configuration of the
reported diarization error rate (e.g. with or without forgive-
ness collars), or different assumption about the (unrealistic)
availability of an oracle voice activity detector.

The author apologizes for the tone of the above rant. The objective
was to convince the reader that they should at the very least share the
actual output of their proposed approaches (ideally in de facto stan-
dard RTTM format) to solve (part of) those problems. The author
goes one step further in Figure [7] by providing open source code to
produce those RTTMs and therefore allow evaluating the approach
on any other (possibly private) dataset.

2See this discussion about CALLHOME test set.
3See the very detailed discussion about the AMI corpus in [3].

# install pyannote.audio

pip install pyannote-audio==2.1

] pretrained pipeline

from pyannote.audio import Pipeline

pipeline = Pipeline.from_pretrained(
"pyannote/speaker-diarization")

# apply pipeline and dump R

diarization = pipeline ("audio.wav")

with open("audio.rttm", "w") as f:
diarization.write_rttm(f)

Fig. 7. From zero to RTTMs with pyannote.audio

The leftmost part of Table |I| summarizes the performance of
these few lines of code. There, the processing is fully automatic
(no oracle voice activity detection, no oracle number of speakers,
no fine-tuning of the internal models nor tuning of the pipeline
hyper-parameters to each specific dataset) with the least forgiving
diarization error rate (DER) setup (no forgiveness collar, evalu-
ation of overlapped speech). Unless stated otherwise in the first
column, we report results on the official test sets of 11 benchmarks
for which we claim state-of-the-art performance on AISHELL-
4 [110, AMI headset mix [13]], REPERE phase?2 [18]], Albayzin RTVE
2020 [10]. The eagle-eyed reader is informed that the precom-
puted RTTMs are available for download at hf.co/pyannote/speaker-
diarization/tree/2022.10

Using one Nvidia Tesla V100 SXM?2 GPU (for neural inference
described in sections [2.1|and and one Intel Cascade Lake 6248
CPU (for the clustering and aggregation described in sections 2.3]
and[2.4), the proposed pipeline is 40 times faster than real time, with
most of the time spent in the speaker embedding extraction step.
In particular, all experiments reported in Table [T] relies on the im-
plementation of ECAPA-TDNN [19] available in SpeechBrain [20]
because it was found to outperform three open-source alternatives.
For instance, on VoxConverse v0.3, the fine-tuned pipeline reaches
DER = 14.9% with the xvector implementation available in pyan-
note.audio, [21]], 12.0% with NeMo’s TitaNet [22], 10.8% with
RawNet3|[23]], and 10.7% with SpeechBrain’s ECAPA-TDNN.

4. RECIPE

While the leftmost part of Table [1| reports performance of the pre-
trained speaker diarization pipeline (with default hyper-parameters
and default internal models), this section provides a recipe to adapt it
to a particular target domain and (hopefully) get better performance.
Depending on the number and duration of labeled conversations, the
practitioner may either focus on optimizing hyper-parameters (6, §
and A, introduced in Section [2.1] 2.3] and [2:4] respectively) or ad-
ditionally fine-tune the internal speaker segmentation model. Fine-
tuning speaker embedding might also be an option in case even more
data is available for a particular domain but this is out of the scope
of both this paper and pyannote.audio (since we rely on external li-
braries for this model).

4.1. Optimizing pipeline hyper-parameters

In case a small development set of labeled conversations is available,
optimizing pipeline hyper-parameters (with the few lines of code in
Figure ) may lead to significant performance improvement.


https://github.com/BUTSpeechFIT/CALLHOME_sublists/issues/1
https://hf.co/pyannote/speaker-diarization/tree/2022.10
https://hf.co/pyannote/speaker-diarization/tree/2022.10
https://hf.co/pyannote/embedding
https://hf.co/pyannote/embedding
https://hf.co/nvidia/speakerverification_en_titanet_large
https://hf.co/jungjee/RawNet3

Recipe — Default pipeline Dev. + optimized hyper-parameters Train. + finetuned segmentation model
| Dataset DER% FA+MISS% CONF% || files | DER% FA+MISS% CONF% || duration | DER% FA+MISS% CONF%
AISHELL-4 L1 14.1 8.4 5.7 20 14.0 7.9 6.1 96h 14.5 7.9 6.6
AMI headset mix [13] | 18.9 14.0 4.9 18 | 18.9 14.0 4.9 80h | 18.5 14.0 4.4
DIHARD 3 full [17] | 26.9 18.9 8.0 62 | 22.2 15.1 7.1 25h | 21.9 14.4 7.5
REPERE phase 2 18] 8.2 4.7 3.5 27 8.3 4.9 3.4 33h 8.3 4.8 3.4
VoxConverse v0.3 [9] 11.2 7.3 3.9 72 | 10.8 7.2 3.7 15h | 10.7 7.4 3.3
Average (in domain) 15.9 10.7 5.2 - | 14.8 9.8 5.0 - | 14.8 9.7 5.0
Albayzin/RTVE 2020 [10] 16.0 8.4 7.6 40 19.9 8.1 11.8 126h 19.6 8.1 11.5
AliMeeting channel 1 [12] | 274 18.8 8.6 8 | 29.0 19.0 10.0 110h | 23.8 15.6 8.2
AMl array 1, channel 1~ [13] | 27.1 21.9 5.2 18 | 25.9 20.7 5.2 80h | 22.2 16.0 6.2
CALLHOME part 2 [16] 32.4 20.0 12.4 40 32.4 20.0 12.4 7h 29.3 17.6 11.7
Egodd vi, validation [14] | 64.0 48.3 15.7 50 | 60.3 44.5 15.8 32h | 51.8 33.7 18.0
This American Life [15] | 20.8 13.9 6.9 34 | 18.4 10.4 8.1 580h | 15.2 2.6 12.6
Average (out of domain) 31.3 21.9 9.4 - | 31.0 20.4 10.6 - | 27.0 15.6 11.4
Average (overall) 24.3 16.8 7.5 - | 236 15.6 8.0 - | 214 12.9 8.5

Table 1. Performance of the (default, optimized, and fine-tuned) pipelines on 11 different benchmarks. The grey background marks the best
results for each dataset as well as those less than 5% worse relatively. DER stands for diarization error rate, which is the sum of two terms:
CONEF for speaker confusion rate, and FA+MISS for false alarm and missed detection rates. We also report the scale of development (for
optimizing hyper-parameters, in number of files) and training sets (for fine-tuning the segmentation model, in number of hours).

# load dataset with pyannote.database

from pyannote.database import get_protocol
dataset = get_protocol(...)

dev_files = list (dataset.development ())

# 1 —param ters with 1% ote. pipe
from pyannote. plpellne 1mport Optimizer
optimizer = Optimizer (pipeline)

optimizer.tune (dev_£files)

# apply optimized pipeline
diarization = optimizer.best_pipeline ("audio.wav")

Fig. 8. Optimizing hyper-parameters with pyannote.pipeline

Datasets listed in Table [T] are split into two groups: in domain
datasets whose training subsets have been used to train the underly-
ing segmentation model (available at hf.co/pyannote/segmentation)
and the remaining datasets that have not (hence considered out of
domain). In domain datasets benefit the most from hyper-parameter
optimization (with a relative 7% DER decrease) while it might even
degrades performance when only a limited set of development files
is available (see AliMeeting results for instance). A closer look at the
actual values of the hyper-parameters before and after optimization
shows that 6 (used for binarizing speaker segmentation) is the most
important hyper-parameter to tune, followed by A (for filling short
intra-speaker gaps) and then only ¢ (that serves as stopping criterion
for the clustering stage).

4.2. Fine-tuning segmentation model

When a larger training set of labeled conversations is available, fine-
tuning the internal speaker segmentation model (with the few lines
of code in Figure[J) lead to significant performance boost. With the
exception of AISHELL-4 and Albayzin benchmarks, the best perfor-
mance is obtained with this configuration (as highlighted by the grey
background in the rightmost part of Table|l} As expected, out of do-
main datasets benefit the most from this fine-tuning step (witnessing
a 14% relative DER decrease vs. only 7% for in domain).
Furthermore, a nice side effect of this fine-tuning step is that
it completely removes the need for the final post-processing step
(numbered #4 in Section [2.4). Hence, the optimal value for A sys-

# load pretrained model
from pyannote.audio import Model
model = Model.from_pretrained ("pyannote/segmentation")

from pyannote.audio.tasks 1mport Segmentation
model.task = Segmentation (dataset)

# fine-tune model with pytorch-lightning
from pytorch_lightning import Trainer
trainer = Trainer ()

trainer.fit (model)

Fig. 9. Fine-tuning segmentation model with pytorch-lightning.

tematically converges towards zero second when the segmentation
model has first been fine-tuned to the target domain (which is equiv-
alent to not filling any intra-speaker gaps). This is to be compared
with the following optimal values for A when the pipeline relies on
the pretrained speaker segmentation model: 10ms for AISHELL-4,
400ms for REPERE and VoxConverse, 500ms for AliMeeting, 1.5s
for Albayzin, or even 2s for The American Life. In other words,
fine-tuning the segmentation not only improves the performance but
also reduces the dimensionality of the hyper-parameter search space,
from 3 (4, 0, and A) to only 2 hyper-parameters (J and 6).

5. CONCLUSION

We introduced version 2.1 of pyannote.audio open source speaker
diarization pipeline, evaluated its performance on a large collection
of benchmarking datasets, and described a recipe that practitioners
can follow to make the most of their own labeled data and adapt
the pretrained pipeline to their particular use case. The author used
the recipe to reach 6" place at VoxSRC 2022 challenge, 1 place at
Ego4D 2022 challenge, and =™ place at Albayzin 2022 challengtﬂ
The source code, pretrained models and expected outputs are openly
shared with the community on hf.co/pyannote/speaker-diarization.
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