--- license: apache-2.0 tags: - generated_from_trainer datasets: - stereoset metrics: - accuracy model-index: - name: bert-base-uncased_stereoset_finetuned results: - task: name: Text Classification type: text-classification dataset: name: stereoset type: stereoset config: intersentence split: validation args: intersentence metrics: - name: Accuracy type: accuracy value: 0.7260596546310832 --- # bert-base-uncased_stereoset_finetuned This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the stereoset dataset. It achieves the following results on the evaluation set: - Loss: 1.3464 - Accuracy: 0.7261 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 128 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 0.21 | 5 | 0.6832 | 0.5565 | | No log | 0.42 | 10 | 0.6945 | 0.4741 | | No log | 0.62 | 15 | 0.6659 | 0.6224 | | No log | 0.83 | 20 | 0.6337 | 0.6758 | | No log | 1.04 | 25 | 0.6019 | 0.6695 | | No log | 1.25 | 30 | 0.5797 | 0.7096 | | No log | 1.46 | 35 | 0.5562 | 0.7166 | | No log | 1.67 | 40 | 0.5497 | 0.7363 | | No log | 1.88 | 45 | 0.5382 | 0.7418 | | No log | 2.08 | 50 | 0.5356 | 0.7418 | | No log | 2.29 | 55 | 0.5690 | 0.7316 | | No log | 2.5 | 60 | 0.5778 | 0.7418 | | No log | 2.71 | 65 | 0.5695 | 0.7386 | | No log | 2.92 | 70 | 0.5765 | 0.7386 | | No log | 3.12 | 75 | 0.6079 | 0.7363 | | No log | 3.33 | 80 | 0.6919 | 0.7370 | | No log | 3.54 | 85 | 0.7396 | 0.7339 | | No log | 3.75 | 90 | 0.7109 | 0.7339 | | No log | 3.96 | 95 | 0.7246 | 0.7308 | | No log | 4.17 | 100 | 0.7502 | 0.7292 | | No log | 4.38 | 105 | 0.8222 | 0.7331 | | No log | 4.58 | 110 | 0.8508 | 0.7268 | | No log | 4.79 | 115 | 0.8995 | 0.7378 | | No log | 5.0 | 120 | 0.8797 | 0.7323 | | No log | 5.21 | 125 | 0.9254 | 0.7370 | | No log | 5.42 | 130 | 0.9863 | 0.7292 | | No log | 5.62 | 135 | 1.0044 | 0.7198 | | No log | 5.83 | 140 | 1.0236 | 0.7339 | | No log | 6.04 | 145 | 1.0705 | 0.7355 | | No log | 6.25 | 150 | 1.0734 | 0.7323 | | No log | 6.46 | 155 | 1.1066 | 0.7300 | | No log | 6.67 | 160 | 1.1166 | 0.7292 | | No log | 6.88 | 165 | 1.1258 | 0.7370 | | No log | 7.08 | 170 | 1.1972 | 0.7300 | | No log | 7.29 | 175 | 1.1682 | 0.7268 | | No log | 7.5 | 180 | 1.2221 | 0.7166 | | No log | 7.71 | 185 | 1.2813 | 0.7151 | | No log | 7.92 | 190 | 1.3180 | 0.7214 | | No log | 8.12 | 195 | 1.3224 | 0.7166 | | No log | 8.33 | 200 | 1.3252 | 0.7135 | | No log | 8.54 | 205 | 1.3205 | 0.7221 | | No log | 8.75 | 210 | 1.3266 | 0.7245 | | No log | 8.96 | 215 | 1.3318 | 0.7206 | | No log | 9.17 | 220 | 1.3345 | 0.7237 | | No log | 9.38 | 225 | 1.3378 | 0.7245 | | No log | 9.58 | 230 | 1.3422 | 0.7261 | | No log | 9.79 | 235 | 1.3453 | 0.7261 | | No log | 10.0 | 240 | 1.3464 | 0.7261 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1 - Datasets 2.9.0 - Tokenizers 0.13.2