--- language: - te license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer datasets: - Sonal0205/telugu_whisper_asr metrics: - wer model-index: - name: Whisper Small te - heisenberg3376 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: telugu asr type: Sonal0205/telugu_whisper_asr args: 'config: te, split: test' metrics: - name: Wer type: wer value: 30.053507728894175 --- # Whisper Small te - heisenberg3376 This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the [Sonal0205/telugu_whisper_asr](https://huggingface.co/datasets/Sonal0205/telugu_whisper_asr) dataset. It achieves the following results on the evaluation set: - Loss: 0.1082 - Wer: 30.0535 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 0.0923 | 1.0582 | 1000 | 0.1281 | 43.7277 | | 0.0377 | 2.1164 | 2000 | 0.1060 | 35.0773 | | 0.0151 | 3.1746 | 3000 | 0.1125 | 32.5505 | | 0.0063 | 4.2328 | 4000 | 0.1082 | 30.0535 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.3.0+cu121 - Datasets 2.19.2 - Tokenizers 0.19.1