--- extra_gated_heading: Access Llama 2 on Hugging Face extra_gated_description: >- This is a form to enable access to Llama 2 on Hugging Face after you have been granted access from Meta. Please visit the [Meta website](https://ai.meta.com/resources/models-and-libraries/llama-downloads) and accept our license terms and acceptable use policy before submitting this form. Requests will be processed in 1-2 days. extra_gated_prompt: >- **Your Hugging Face account email address MUST match the email you provide on the Meta website, or your request will not be approved.** extra_gated_button_content: Submit extra_gated_fields: I agree to share my name, email address and username with Meta and confirm that I have already been granted download access on the Meta website: checkbox language: - en pipeline_tag: text-generation inference: false tags: - facebook - meta - pytorch - llama - llama-2 --- This is 82M parameters llama model of random weights. This model can be use for proof of concept.
Tokenizer is copy of meta-llama/Llama-2-7b ``` # Use a pipeline as a high-level helper from transformers import LlamaConfig, LlamaForCausalLM, LlamaTokenizer import numpy as np config = LlamaConfig(vocab_size=32000, hidden_size=768, intermediate_size=768*4, num_hidden_layers=4, num_attention_heads=8) tokenizer = LlamaTokenizer.from_pretrained("meta-llama/Llama-2-7b") model = LlamaForCausalLM(config).half() model_parameters = filter(lambda p: p.requires_grad, model.parameters()) params = sum([np.prod(p.size()) for p in model_parameters]) print(params / 1024 / 1024) # 82.881591796875 hub_id = "heegyu/llama-small-randomweights" tokenizer.push_to_hub(hub_id) model.push_to_hub(hub_id) ```