--- license: apache-2.0 base_model: microsoft/swin-tiny-patch4-window7-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy - precision - recall - f1 model-index: - name: batch-size-16_FFPP-Raw_1FPS_faces-expand-0-aligned_unaugmentation results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.9837432499886555 - name: Precision type: precision value: 0.9830542407298831 - name: Recall type: recall value: 0.9964053803339518 - name: F1 type: f1 value: 0.9896847848777363 --- # batch-size-16_FFPP-Raw_1FPS_faces-expand-0-aligned_unaugmentation This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0442 - Accuracy: 0.9837 - Precision: 0.9831 - Recall: 0.9964 - F1: 0.9897 - Roc Auc: 0.9991 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | Roc Auc | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:-------:| | 0.0483 | 1.0 | 1377 | 0.0442 | 0.9837 | 0.9831 | 0.9964 | 0.9897 | 0.9991 | ### Framework versions - Transformers 4.39.2 - Pytorch 2.3.0 - Datasets 2.18.0 - Tokenizers 0.15.2