--- license: mit base_model: xlm-roberta-base tags: - generated_from_trainer model-index: - name: xlm_r_base-finetuned_after_mrp-v2-lucky-cloud-13 results: [] --- # xlm_r_base-finetuned_after_mrp-v2-lucky-cloud-13 This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3887 - Precision 0: 0.8520 - Precision 1: 0.8061 - Recall 0: 0.8721 - Recall 1: 0.7783 - F1 0: 0.8619 - F1 1: 0.7920 - Precision Weighted: 0.8334 - Recall Weighted: 0.834 - F1 Weighted: 0.8335 - F1 Macro: 0.8269 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision 0 | Precision 1 | Recall 0 | Recall 1 | F1 0 | F1 1 | Precision Weighted | Recall Weighted | F1 Weighted | F1 Macro | |:-------------:|:-----:|:----:|:---------------:|:-----------:|:-----------:|:--------:|:--------:|:------:|:------:|:------------------:|:---------------:|:-----------:|:--------:| | 0.521 | 1.0 | 469 | 0.4041 | 0.8088 | 0.8493 | 0.9172 | 0.6828 | 0.8596 | 0.7570 | 0.8252 | 0.822 | 0.8179 | 0.8083 | | 0.3826 | 2.0 | 938 | 0.3844 | 0.8719 | 0.7672 | 0.8296 | 0.8217 | 0.8502 | 0.7935 | 0.8294 | 0.8264 | 0.8272 | 0.8219 | | 0.3552 | 3.0 | 1407 | 0.3887 | 0.8520 | 0.8061 | 0.8721 | 0.7783 | 0.8619 | 0.7920 | 0.8334 | 0.834 | 0.8335 | 0.8269 | | 0.2801 | 4.0 | 1876 | 0.4242 | 0.8648 | 0.7843 | 0.8485 | 0.8059 | 0.8566 | 0.7949 | 0.8321 | 0.8312 | 0.8315 | 0.8258 | | 0.2223 | 5.0 | 2345 | 0.4754 | 0.8755 | 0.7726 | 0.8337 | 0.8266 | 0.8541 | 0.7987 | 0.8337 | 0.8308 | 0.8316 | 0.8264 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.3.0+cu121 - Datasets 2.19.2 - Tokenizers 0.19.1