--- language: - fi tags: - finnish - gpt2 widget: - text: "Jotta voidaan luoda tekstiä" --- Model page TODO. Model name in my thesis was FinnGPT but I chose not to pollute the namespace and leave that kind of name for a more serious attempt at Finnish GPT models. ### How to use Example with text generation pipeline: ```python >>> from transformers import pipeline >>> generator = pipeline('text-generation', model='hatanp/gpt-fi') >>> generator("Testilauseella voidaan testata tokenisointia. Tämän jatkaminen on luultavasti vaikeaa, mutta", max_length=3,do_sample=True, top_p=0.9, top_k=12, temperature=0.9, num_return_sequences=2) [{'generated_text': 'Testilauseella voidaan testata tokenisointia. Tämän jatkaminen on luultavasti vaikeaa, mutta ei mahdotonta. \n Jos et ole kiinnostunut tokenis'}, {'generated_text': 'Testilauseella voidaan testata tokenisointia. Tämän jatkaminen on luultavasti vaikeaa, mutta sen toteuttaminen onnistuu, jos testilaboratorio osaa analysoida'}, {'generated_text': 'Testilauseella voidaan testata tokenisointia. Tämän jatkaminen on luultavasti vaikeaa, mutta sen testaaminen on silti hyödyllistä. Jos testisuorit'}] ``` Example to generate text manually: ```python >>> from transformers import AutoModelForCausalLM,AutoTokenizer >>> model = AutoModelForCausalLM.from_pretrained("hatanp/gpt-fi") >>> tokenizer = AutoTokenizer.from_pretrained("hatanp/gpt-fi") >>> prompt = "Testilauseella voidaan testata tokenisointia. Tämän jatkaminen on luultavasti vaikeaa, mutta" >>> inputs = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt") >>> prompt_len = len(tokenizer.decode(inputs[0],skip_special_tokens=True, clean_up_tokenization_spaces=True)) >>> outputs = model.generate(inputs, max_length=len(inputs[0])+20, do_sample=True, top_p=0.9, top_k=12, temperature=0.9) >>> text_out = tokenizer.decode(outputs[0])[prompt_len:] >>> print(text_out) " on olemassa joitain keinoja, joilla voit testata tokenisointia. Tässä artikkelissa käydään läpi testilauseiden" ```