--- license: mit base_model: facebook/xlm-v-base tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: scenario-TCR-XLMV_data-cl-cardiff_cl_only_beta2 results: [] --- # scenario-TCR-XLMV_data-cl-cardiff_cl_only_beta2 This model is a fine-tuned version of [facebook/xlm-v-base](https://huggingface.co/facebook/xlm-v-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0989 - Accuracy: 0.3333 - F1: 0.1667 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 67 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.09 | 250 | 1.0903 | 0.3673 | 0.2479 | | 1.091 | 2.17 | 500 | 1.1006 | 0.3333 | 0.1667 | | 1.091 | 3.26 | 750 | 1.0991 | 0.3333 | 0.1667 | | 1.0999 | 4.35 | 1000 | 1.0988 | 0.3333 | 0.1667 | | 1.0999 | 5.43 | 1250 | 1.0989 | 0.3333 | 0.1667 | | 1.0995 | 6.52 | 1500 | 1.0998 | 0.3333 | 0.1667 | | 1.0995 | 7.61 | 1750 | 1.0987 | 0.3333 | 0.1667 | | 1.0993 | 8.7 | 2000 | 1.0987 | 0.3333 | 0.1667 | | 1.0993 | 9.78 | 2250 | 1.0987 | 0.3333 | 0.1667 | | 1.1002 | 10.87 | 2500 | 1.0987 | 0.3333 | 0.1667 | | 1.1002 | 11.96 | 2750 | 1.0988 | 0.3333 | 0.1667 | | 1.0996 | 13.04 | 3000 | 1.0987 | 0.3333 | 0.1667 | | 1.0996 | 14.13 | 3250 | 1.0990 | 0.3333 | 0.1667 | | 1.0991 | 15.22 | 3500 | 1.0987 | 0.3333 | 0.1667 | | 1.0991 | 16.3 | 3750 | 1.0987 | 0.3333 | 0.1667 | | 1.0992 | 17.39 | 4000 | 1.0986 | 0.3333 | 0.1667 | | 1.0992 | 18.48 | 4250 | 1.0987 | 0.3333 | 0.1667 | | 1.0991 | 19.57 | 4500 | 1.0987 | 0.3333 | 0.1667 | | 1.0991 | 20.65 | 4750 | 1.0987 | 0.3333 | 0.1667 | | 1.099 | 21.74 | 5000 | 1.0988 | 0.3333 | 0.1667 | | 1.099 | 22.83 | 5250 | 1.0987 | 0.3333 | 0.1667 | | 1.099 | 23.91 | 5500 | 1.0987 | 0.3333 | 0.1667 | | 1.099 | 25.0 | 5750 | 1.0986 | 0.3333 | 0.1667 | | 1.0988 | 26.09 | 6000 | 1.0991 | 0.3333 | 0.1667 | | 1.0988 | 27.17 | 6250 | 1.0991 | 0.3333 | 0.1667 | | 1.0988 | 28.26 | 6500 | 1.0990 | 0.3333 | 0.1667 | | 1.0988 | 29.35 | 6750 | 1.0989 | 0.3333 | 0.1667 | ### Framework versions - Transformers 4.33.3 - Pytorch 2.1.1+cu121 - Datasets 2.14.5 - Tokenizers 0.13.3