--- license: mit base_model: facebook/xlm-v-base tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: scenario-TCR-XLMV-XCOPA-6_data-xcopa_all results: [] --- # scenario-TCR-XLMV-XCOPA-6_data-xcopa_all This model is a fine-tuned version of [facebook/xlm-v-base](https://huggingface.co/facebook/xlm-v-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6931 - Accuracy: 0.535 - F1: 0.5114 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 341241 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 500 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 0.38 | 5 | 0.6931 | 0.5317 | 0.4955 | | No log | 0.77 | 10 | 0.6931 | 0.4917 | 0.4592 | | No log | 1.15 | 15 | 0.6931 | 0.535 | 0.5053 | | No log | 1.54 | 20 | 0.6932 | 0.4867 | 0.4643 | | No log | 1.92 | 25 | 0.6931 | 0.5217 | 0.5017 | | No log | 2.31 | 30 | 0.6935 | 0.4967 | 0.4655 | | No log | 2.69 | 35 | 0.6930 | 0.5033 | 0.4726 | | No log | 3.08 | 40 | 0.6932 | 0.49 | 0.4622 | | No log | 3.46 | 45 | 0.6931 | 0.5225 | 0.4833 | | No log | 3.85 | 50 | 0.6931 | 0.4983 | 0.4738 | | No log | 4.23 | 55 | 0.6931 | 0.5217 | 0.4974 | | No log | 4.62 | 60 | 0.6931 | 0.5475 | 0.5216 | | No log | 5.0 | 65 | 0.6931 | 0.5467 | 0.5169 | | No log | 5.38 | 70 | 0.6931 | 0.5425 | 0.5129 | | No log | 5.77 | 75 | 0.6931 | 0.5433 | 0.5133 | | No log | 6.15 | 80 | 0.6931 | 0.5417 | 0.5107 | | No log | 6.54 | 85 | 0.6931 | 0.5458 | 0.5121 | | No log | 6.92 | 90 | 0.6931 | 0.5417 | 0.5098 | | No log | 7.31 | 95 | 0.6931 | 0.5483 | 0.5152 | | No log | 7.69 | 100 | 0.6931 | 0.5525 | 0.5201 | | No log | 8.08 | 105 | 0.6931 | 0.5342 | 0.5092 | | No log | 8.46 | 110 | 0.6931 | 0.5158 | 0.4943 | | No log | 8.85 | 115 | 0.6931 | 0.5483 | 0.5178 | | No log | 9.23 | 120 | 0.6931 | 0.505 | 0.4715 | | No log | 9.62 | 125 | 0.6931 | 0.4825 | 0.4440 | | No log | 10.0 | 130 | 0.6931 | 0.4767 | 0.4353 | | No log | 10.38 | 135 | 0.6931 | 0.4642 | 0.4315 | | No log | 10.77 | 140 | 0.6931 | 0.5458 | 0.5156 | | No log | 11.15 | 145 | 0.6931 | 0.54 | 0.5098 | | No log | 11.54 | 150 | 0.6931 | 0.5458 | 0.5164 | | No log | 11.92 | 155 | 0.6931 | 0.5442 | 0.5172 | | No log | 12.31 | 160 | 0.6931 | 0.5375 | 0.5119 | | No log | 12.69 | 165 | 0.6932 | 0.4667 | 0.4386 | | No log | 13.08 | 170 | 0.6931 | 0.5383 | 0.5157 | | No log | 13.46 | 175 | 0.6931 | 0.5375 | 0.5136 | | No log | 13.85 | 180 | 0.6931 | 0.5392 | 0.5162 | | No log | 14.23 | 185 | 0.6931 | 0.5392 | 0.5179 | | No log | 14.62 | 190 | 0.6931 | 0.5417 | 0.5192 | | No log | 15.0 | 195 | 0.6931 | 0.5392 | 0.5162 | | No log | 15.38 | 200 | 0.6931 | 0.5383 | 0.5149 | | No log | 15.77 | 205 | 0.6931 | 0.535 | 0.5122 | | No log | 16.15 | 210 | 0.6931 | 0.535 | 0.5114 | ### Framework versions - Transformers 4.33.3 - Pytorch 2.1.1+cu121 - Datasets 2.14.5 - Tokenizers 0.13.3