Edit model card

scenario-TCR-XLMV-4_data-AmazonScience_massive_all_1_1

This model is a fine-tuned version of facebook/xlm-v-base on the massive dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8322
  • Accuracy: 0.8462
  • F1: 0.8244

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 777
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 500

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
0.595 0.27 5000 0.7040 0.8241 0.7720
0.4654 0.53 10000 0.6468 0.8410 0.8027
0.3838 0.8 15000 0.6802 0.8399 0.7994
0.2831 1.07 20000 0.7290 0.8471 0.8206
0.274 1.34 25000 0.7192 0.8471 0.8141
0.2598 1.6 30000 0.7145 0.8440 0.8215
0.2501 1.87 35000 0.7347 0.8500 0.8245
0.2022 2.14 40000 0.7809 0.8503 0.8223
0.2164 2.41 45000 0.7481 0.8533 0.8280
0.2008 2.67 50000 0.7684 0.8467 0.8252
0.2015 2.94 55000 0.8170 0.8422 0.8160
0.1716 3.21 60000 0.8603 0.8433 0.8186
0.1643 3.47 65000 0.8221 0.8514 0.8279
0.1816 3.74 70000 0.8322 0.8462 0.8244

Framework versions

  • Transformers 4.33.3
  • Pytorch 2.1.1+cu121
  • Datasets 2.14.5
  • Tokenizers 0.13.3
Downloads last month
6
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for haryoaw/scenario-TCR-XLMV-4_data-AmazonScience_massive_all_1_1

Finetuned
(41)
this model

Evaluation results