--- license: apache-2.0 tags: - generated_from_trainer datasets: - ingredients_yes_no metrics: - precision - recall - f1 - accuracy model-index: - name: distilbert-base-uncased-finetuned-ingredients results: - task: name: Token Classification type: token-classification dataset: name: ingredients_yes_no type: ingredients_yes_no args: IngredientsYesNo metrics: - name: Precision type: precision value: 0.9944576405384006 - name: Recall type: recall value: 0.9960348929421095 - name: F1 type: f1 value: 0.9952456418383517 - name: Accuracy type: accuracy value: 0.9984752521698335 --- # distilbert-base-uncased-finetuned-ingredients This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the ingredients_yes_no dataset. It achieves the following results on the evaluation set: - Loss: 0.0112 - Precision: 0.9945 - Recall: 0.9960 - F1: 0.9952 - Accuracy: 0.9985 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 198 | 0.0264 | 0.9771 | 0.9794 | 0.9782 | 0.9937 | | No log | 2.0 | 396 | 0.0149 | 0.9851 | 0.9937 | 0.9893 | 0.9965 | | 0.1007 | 3.0 | 594 | 0.0116 | 0.9937 | 0.9952 | 0.9945 | 0.9979 | | 0.1007 | 4.0 | 792 | 0.0099 | 0.9960 | 0.9968 | 0.9964 | 0.9986 | | 0.1007 | 5.0 | 990 | 0.0096 | 0.9945 | 0.9968 | 0.9956 | 0.9986 | | 0.0057 | 6.0 | 1188 | 0.0102 | 0.9937 | 0.9960 | 0.9949 | 0.9986 | | 0.0057 | 7.0 | 1386 | 0.0105 | 0.9937 | 0.9960 | 0.9949 | 0.9986 | | 0.0014 | 8.0 | 1584 | 0.0108 | 0.9945 | 0.9960 | 0.9952 | 0.9985 | | 0.0014 | 9.0 | 1782 | 0.0111 | 0.9945 | 0.9960 | 0.9952 | 0.9985 | | 0.0014 | 10.0 | 1980 | 0.0112 | 0.9945 | 0.9960 | 0.9952 | 0.9985 | ### Framework versions - Transformers 4.10.0 - Pytorch 1.9.0+cu102 - Datasets 1.11.0 - Tokenizers 0.10.3