See axolotl config
axolotl version: 0.10.0.dev0
base_model: GreenerPastures/Basically-Human-4B
load_in_8bit: false
load_in_4bit: false
strict: false
datasets:
- path: jeiku/Writing
type: completion
field: text
- path: ResplendentAI/Sissification_Hypno_1k
type: alpaca
- path: ResplendentAI/Synthetic_Soul_1k
type: alpaca
chat_template: qwen3
val_set_size: 0
output_dir: ./outputs/out
dataset_prepared_path: last_run_prepared
shuffle_merged_datasets: true
hub_model_id: hardlyworking/AGI
hub_strategy: "all_checkpoints"
push_dataset_to_hub:
hf_use_auth_token: true
plugins:
- axolotl.integrations.liger.LigerPlugin
- axolotl.integrations.cut_cross_entropy.CutCrossEntropyPlugin
liger_rope: true
liger_rms_norm: true
liger_layer_norm: true
liger_glu_activation: true
liger_fused_linear_cross_entropy: false
cut_cross_entropy: true
sequence_len: 8192
sample_packing: true
eval_sample_packing: true
pad_to_sequence_len: true
wandb_project: Qwen4B
wandb_entity:
wandb_watch:
wandb_name: Qwen4B
wandb_log_model:
evals_per_epoch: 2
eval_table_size:
eval_max_new_tokens: 128
gradient_accumulation_steps: 1
micro_batch_size: 1
num_epochs: 4
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 1e-5
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: offload
gradient_checkpointing_kwargs:
use_reentrant: false
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
s2_attention:
deepspeed:
warmup_ratio:
saves_per_epoch: 1
debug:
weight_decay: 0.01
fsdp:
fsdp_config:
special_tokens:
pad_token:
AGI
This model is a fine-tuned version of GreenerPastures/Basically-Human-4B on the jeiku/Writing, the ResplendentAI/Sissification_Hypno_1k and the ResplendentAI/Synthetic_Soul_1k datasets.
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 4
- num_epochs: 4.0
Training results
Framework versions
- Transformers 4.51.3
- Pytorch 2.6.0+cu124
- Datasets 3.5.1
- Tokenizers 0.21.1
- Downloads last month
- 11
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support