happyme531's picture
Upload 12 files
50704de verified
import os
os.chdir(os.path.dirname(os.path.abspath(__file__)))
import numpy as np
import torch
import onnxruntime
from PIL import Image
import requests
from io import BytesIO
import matplotlib.pyplot as plt
from sam2.build_sam import build_sam2
from sam2.sam2_image_predictor import SAM2ImagePredictor
def load_image(url):
"""加载并预处理图片"""
response = requests.get(url)
image = Image.open(BytesIO(response.content)).convert("RGB")
print(f"Original image size: {image.size}")
# 计算resize后的尺寸,保持长宽比
target_size = (1024, 1024)
w, h = image.size
scale = min(target_size[0] / w, target_size[1] / h)
new_w = int(w * scale)
new_h = int(h * scale)
print(f"Scale factor: {scale}")
print(f"Resized dimensions: {new_w}x{new_h}")
# resize图片
resized_image = image.resize((new_w, new_h), Image.Resampling.LANCZOS)
# 创建1024x1024的黑色背景
processed_image = Image.new("RGB", target_size, (0, 0, 0))
# 将resized图片粘贴到中心位置
paste_x = (target_size[0] - new_w) // 2
paste_y = (target_size[1] - new_h) // 2
print(f"Paste position: ({paste_x}, {paste_y})")
processed_image.paste(resized_image, (paste_x, paste_y))
# 保存处理后的图片用于检查
processed_image.save("debug_processed_image.png")
# 转换为numpy数组并归一化到[0,1]
img_np = np.array(processed_image).astype(np.float32) / 255.0
# 调整维度顺序从HWC到CHW
img_np = img_np.transpose(2, 0, 1)
# 添加batch维度
img_np = np.expand_dims(img_np, axis=0)
print(f"Final input tensor shape: {img_np.shape}")
return image, img_np, (scale, paste_x, paste_y)
def prepare_point_input(point_coords, point_labels, image_size=(1024, 1024)):
"""准备点击输入数据"""
point_coords = np.array(point_coords, dtype=np.float32)
point_labels = np.array(point_labels, dtype=np.float32)
# 添加batch维度
point_coords = np.expand_dims(point_coords, axis=0)
point_labels = np.expand_dims(point_labels, axis=0)
# 准备mask输入
mask_input = np.zeros((1, 1, 256, 256), dtype=np.float32)
has_mask_input = np.zeros(1, dtype=np.float32)
orig_im_size = np.array(image_size, dtype=np.int32)
return point_coords, point_labels, mask_input, has_mask_input, orig_im_size
def main():
# 1. 加载原始图片
url = "https://raw.githubusercontent.com/facebookresearch/segment-anything/main/notebooks/images/dog.jpg"
orig_image, input_image, (scale, offset_x, offset_y) = load_image(url)
# 2. 准备输入点 - 需要根据scale和offset调整点击坐标
input_point_orig = [[750, 400]]
input_point = [[
int(x * scale + offset_x),
int(y * scale + offset_y)
] for x, y in input_point_orig]
print(f"Original point: {input_point_orig}")
print(f"Transformed point: {input_point}")
input_label = [1]
# 3. 运行PyTorch模型
print("Running PyTorch model...")
checkpoint = "sam2.1_hiera_large.pt"
model_cfg = "configs/sam2.1/sam2.1_hiera_l.yaml"
predictor = SAM2ImagePredictor(build_sam2(model_cfg, checkpoint))
with torch.inference_mode():
predictor.set_image(orig_image)
masks_pt, iou_scores_pt, low_res_masks_pt = predictor.predict(
point_coords=np.array(input_point),
point_labels=np.array(input_label),
multimask_output=True
)
# 4. 运行ONNX模型
print("Running ONNX model...")
encoder_path = "sam2.1_hiera_tiny_encoder.s.onnx"
decoder_path = "sam2.1_hiera_tiny_decoder.onnx"
# 创建ONNX Runtime会话
encoder_session = onnxruntime.InferenceSession(encoder_path)
decoder_session = onnxruntime.InferenceSession(decoder_path)
# 运行encoder
encoder_inputs = {'image': input_image}
high_res_feats_0, high_res_feats_1, image_embed = encoder_session.run(None, encoder_inputs)
# 准备decoder输入
point_coords, point_labels, mask_input, has_mask_input, orig_im_size = prepare_point_input(
input_point, input_label, orig_image.size[::-1]
)
# 运行decoder
decoder_inputs = {
'image_embed': image_embed,
'high_res_feats_0': high_res_feats_0,
'high_res_feats_1': high_res_feats_1,
'point_coords': point_coords,
'point_labels': point_labels,
# 'orig_im_size': orig_im_size,
'mask_input': mask_input,
'has_mask_input': has_mask_input,
}
low_res_masks, iou_predictions = decoder_session.run(None, decoder_inputs)
# 后处理: 将low_res_masks缩放到原始图片尺寸
w, h = orig_image.size
# 1. 首先将mask缩放到1024x1024
masks_1024 = torch.nn.functional.interpolate(
torch.from_numpy(low_res_masks),
size=(1024, 1024),
mode="bilinear",
align_corners=False
)
# 2. 去除padding
new_h = int(h * scale)
new_w = int(w * scale)
start_h = (1024 - new_h) // 2
start_w = (1024 - new_w) // 2
masks_no_pad = masks_1024[..., start_h:start_h+new_h, start_w:start_w+new_w]
# 3. 缩放到原始图片尺寸
masks_onnx = torch.nn.functional.interpolate(
masks_no_pad,
size=(h, w),
mode="bilinear",
align_corners=False
)
# 4. 二值化
masks_onnx = masks_onnx > 0.0
masks_onnx = masks_onnx.numpy()
# 在运行ONNX模型后,打印输出的shape
print(f"\nOutput shapes:")
print(f"PyTorch masks shape: {masks_pt.shape}")
print(f"ONNX masks shape: {masks_onnx.shape}")
# 修改可视化部分,暂时注释掉差异图
plt.figure(figsize=(10, 5))
# PyTorch结果
plt.subplot(121)
plt.imshow(orig_image)
plt.imshow(masks_pt[0], alpha=0.5)
plt.plot(input_point_orig[0][0], input_point_orig[0][1], 'rx')
plt.title('PyTorch Output')
plt.axis('off')
# ONNX结果
plt.subplot(122)
plt.imshow(orig_image)
plt.imshow(masks_onnx[0,0], alpha=0.5)
plt.plot(input_point_orig[0][0], input_point_orig[0][1], 'rx')
plt.title('ONNX Output')
plt.axis('off')
plt.tight_layout()
plt.show()
# 6. 打印一些统计信息
print("\nStatistics:")
print(f"PyTorch IoU scores: {iou_scores_pt}")
print(f"ONNX IoU predictions: {iou_predictions}")
if __name__ == "__main__":
main()