from rknnlite.api.rknn_lite import RKNNLite from transformers import AutoProcessor from PIL import Image import numpy as np import onnxruntime as ort import time # set current working directory to the directory of this file import os os.chdir(os.path.dirname(os.path.abspath(__file__))) # 初始化总时间计数器 total_time = 0 # Initialize RKNNLite instances rknn_vision_encoder = RKNNLite(verbose=False) rknn_encoder = RKNNLite(verbose=False) rknn_decoder_prefill = RKNNLite(verbose=False) # Load RKNN models ret = rknn_vision_encoder.load_rknn('./vision_encoder.rknn') ret = rknn_encoder.load_rknn('./encoder_model.rknn') ret = rknn_decoder_prefill.load_rknn('./decoder_model.rknn') # Init runtime environment for each model ret = rknn_vision_encoder.init_runtime() ret = rknn_encoder.init_runtime() ret = rknn_decoder_prefill.init_runtime() text_embed = ort.InferenceSession("embed_tokens.onnx", providers=['CPUExecutionProvider']) decoder_decode = ort.InferenceSession("decoder_model_merged_q4.onnx", providers=['CPUExecutionProvider']) # vision_encoder = ort.InferenceSession("vision_encoder.onnx", providers=['CPUExecutionProvider']) # 1. prepare inputs processor = AutoProcessor.from_pretrained("/home/firefly/mnt/zt-rk3588-nn/expr/Florence-2-base-ft", trust_remote_code=True) # 2. prepare image image = Image.open("./lena.png") # resize image to 512x512 image = image.resize((512, 512)) # 3. prepare text prompt = "" inputs = processor(text=prompt, images=image, return_tensors="np", do_resize=False) for k, v in inputs.items(): print(k, v.shape) # 4. run vision encoder using RKNN start_time = time.time() image_features = rknn_vision_encoder.inference(inputs=[inputs["pixel_values"]], data_format='nchw')[0] end_time = time.time() vision_encoder_time = (end_time - start_time) * 1000 total_time += vision_encoder_time print(f"Vision encoder time: {vision_encoder_time:.2f} ms") print(image_features.shape) np.save("image_features.npy", image_features) # 5. run text embed using RKNN start_time = time.time() inputs_embeds = text_embed.run(None, { "input_ids": inputs["input_ids"] })[0] end_time = time.time() text_embed_time = (end_time - start_time) * 1000 total_time += text_embed_time print(f"Text embed time: {text_embed_time:.2f} ms") print(inputs_embeds.shape) # 6. concat image features and text embed batch_size, image_token_length = image_features.shape[:-1] image_attention_mask = np.ones((batch_size, image_token_length)) task_prefix_embeds = inputs_embeds task_prefix_attention_mask = np.ones((batch_size, task_prefix_embeds.shape[1])) if len(task_prefix_attention_mask.shape) == 3: task_prefix_attention_mask = task_prefix_attention_mask[:, 0] inputs_embeds = np.concatenate([image_features, task_prefix_embeds], axis=1) attention_mask = np.concatenate([image_attention_mask, task_prefix_attention_mask], axis=1) # 6. run encoder using RKNN start_time = time.time() encoder_out = rknn_encoder.inference(inputs=[attention_mask.astype(np.int64),inputs_embeds]) end_time = time.time() encoder_time = (end_time - start_time) * 1000 total_time += encoder_time print(f"Encoder time: {encoder_time:.2f} ms") encoder_hidden_states = encoder_out[0] print(encoder_hidden_states.shape) # 7. run decoder prefill stage using RKNN start_time = time.time() decoder_outs = rknn_decoder_prefill.inference(inputs=[attention_mask.astype(np.int64), encoder_hidden_states,inputs_embeds[:, -1:]]) end_time = time.time() decoder_prefill_time = (end_time - start_time) * 1000 total_time += decoder_prefill_time print(f"Decoder prefill time: {decoder_prefill_time:.2f} ms") # for output in decoder_outs: # print(output.shape) encoder_kv = decoder_outs[1:] # 8. run decoder decode stage(autoregressive) (using onnxruntime) generated_tokens = [] max_new_tokens = 32 decoder_decode_total_time = 0 while generated_tokens.__len__() < max_new_tokens: # 获取上一步的输出 logits = decoder_outs[0] decoder_kv = decoder_outs[1:] # 选择最后一个token的logits next_token_logits = logits[:, -1, :] # 使用argmax选择下一个token (贪心算法) next_token = np.argmax(next_token_logits, axis=-1)[0] # print("next_token: ", next_token) # 将新生成的token添加到结果中 generated_tokens.append(next_token) # 如果生成了结束符,则停止生成 if next_token == 2: # break # 准备下一步的输入 start_time = time.time() next_input_embeds = text_embed.run(None, { "input_ids": np.array([[next_token]], dtype=np.int64) })[0] end_time = time.time() text_embed_time = (end_time - start_time) * 1000 decoder_decode_total_time += text_embed_time # 运行decoder的decode阶段 start_time = time.time() decoder_outs = decoder_decode.run(None, { "use_cache_branch": np.array([True], dtype=np.bool_), "inputs_embeds": next_input_embeds, "encoder_hidden_states": encoder_hidden_states, "encoder_attention_mask": attention_mask.astype(np.int64), "past_key_values.0.decoder.key": decoder_kv[0], "past_key_values.0.decoder.value": decoder_kv[1], "past_key_values.0.encoder.key": encoder_kv[2], "past_key_values.0.encoder.value": encoder_kv[3], "past_key_values.1.decoder.key": decoder_kv[4], "past_key_values.1.decoder.value": decoder_kv[5], "past_key_values.1.encoder.key": encoder_kv[6], "past_key_values.1.encoder.value": encoder_kv[7], "past_key_values.2.decoder.key": decoder_kv[8], "past_key_values.2.decoder.value": decoder_kv[9], "past_key_values.2.encoder.key": encoder_kv[10], "past_key_values.2.encoder.value": encoder_kv[11], "past_key_values.3.decoder.key": decoder_kv[12], "past_key_values.3.decoder.value": decoder_kv[13], "past_key_values.3.encoder.key": encoder_kv[14], "past_key_values.3.encoder.value": encoder_kv[15], "past_key_values.4.decoder.key": decoder_kv[16], "past_key_values.4.decoder.value": decoder_kv[17], "past_key_values.4.encoder.key": encoder_kv[18], "past_key_values.4.encoder.value": encoder_kv[19], "past_key_values.5.decoder.key": decoder_kv[20], "past_key_values.5.decoder.value": decoder_kv[21], "past_key_values.5.encoder.key": encoder_kv[22], "past_key_values.5.encoder.value": encoder_kv[23], }) end_time = time.time() decoder_decode_time = (end_time - start_time) * 1000 decoder_decode_total_time += decoder_decode_time total_time += decoder_decode_total_time print(f"Decoder decode total time: {decoder_decode_total_time:.2f} ms") # 将生成的tokens转换为文本 print("generated_tokens: ", generated_tokens) generated_text = processor.batch_decode([generated_tokens], skip_special_tokens=False)[0] print("Generated Text:", generated_text) parsed_answer = processor.post_process_generation(generated_text, task=prompt, image_size=(image.width, image.height)) print("Parsed Answer:", parsed_answer) print(f"Total inference time: {total_time:.2f} ms") # Release RKNNLite instances rknn_vision_encoder.release() rknn_encoder.release() rknn_decoder_prefill.release()